Upload 2 files
Browse files- SUPIR/__init__.py +0 -0
- SUPIR/util.py +179 -0
SUPIR/__init__.py
ADDED
|
File without changes
|
SUPIR/util.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torch.nn.functional import interpolate
|
| 7 |
+
from omegaconf import OmegaConf
|
| 8 |
+
from sgm.util import instantiate_from_config
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_state_dict(d):
|
| 12 |
+
return d.get('state_dict', d)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_state_dict(ckpt_path, location='cpu'):
|
| 16 |
+
_, extension = os.path.splitext(ckpt_path)
|
| 17 |
+
if extension.lower() == ".safetensors":
|
| 18 |
+
import safetensors.torch
|
| 19 |
+
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
|
| 20 |
+
else:
|
| 21 |
+
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
|
| 22 |
+
state_dict = get_state_dict(state_dict)
|
| 23 |
+
print(f'Loaded state_dict from [{ckpt_path}]')
|
| 24 |
+
return state_dict
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def create_model(config_path):
|
| 28 |
+
config = OmegaConf.load(config_path)
|
| 29 |
+
model = instantiate_from_config(config.model).cpu()
|
| 30 |
+
print(f'Loaded model config from [{config_path}]')
|
| 31 |
+
return model
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def create_SUPIR_model(config_path, SUPIR_sign=None, load_default_setting=False):
|
| 35 |
+
config = OmegaConf.load(config_path)
|
| 36 |
+
model = instantiate_from_config(config.model).cpu()
|
| 37 |
+
print(f'Loaded model config from [{config_path}]')
|
| 38 |
+
if config.SDXL_CKPT is not None:
|
| 39 |
+
model.load_state_dict(load_state_dict(config.SDXL_CKPT), strict=False)
|
| 40 |
+
if config.SUPIR_CKPT is not None:
|
| 41 |
+
model.load_state_dict(load_state_dict(config.SUPIR_CKPT), strict=False)
|
| 42 |
+
if SUPIR_sign is not None:
|
| 43 |
+
assert SUPIR_sign in ['F', 'Q']
|
| 44 |
+
if SUPIR_sign == 'F':
|
| 45 |
+
model.load_state_dict(load_state_dict(config.SUPIR_CKPT_F), strict=False)
|
| 46 |
+
elif SUPIR_sign == 'Q':
|
| 47 |
+
model.load_state_dict(load_state_dict(config.SUPIR_CKPT_Q), strict=False)
|
| 48 |
+
if load_default_setting:
|
| 49 |
+
default_setting = config.default_setting
|
| 50 |
+
return model, default_setting
|
| 51 |
+
return model
|
| 52 |
+
|
| 53 |
+
def load_QF_ckpt(config_path):
|
| 54 |
+
config = OmegaConf.load(config_path)
|
| 55 |
+
ckpt_F = torch.load(config.SUPIR_CKPT_F, map_location='cpu')
|
| 56 |
+
ckpt_Q = torch.load(config.SUPIR_CKPT_Q, map_location='cpu')
|
| 57 |
+
return ckpt_Q, ckpt_F
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def PIL2Tensor(img, upsacle=1, min_size=1024, fix_resize=None):
|
| 61 |
+
'''
|
| 62 |
+
PIL.Image -> Tensor[C, H, W], RGB, [-1, 1]
|
| 63 |
+
'''
|
| 64 |
+
# size
|
| 65 |
+
w, h = img.size
|
| 66 |
+
w *= upsacle
|
| 67 |
+
h *= upsacle
|
| 68 |
+
w0, h0 = round(w), round(h)
|
| 69 |
+
if min(w, h) < min_size:
|
| 70 |
+
_upsacle = min_size / min(w, h)
|
| 71 |
+
w *= _upsacle
|
| 72 |
+
h *= _upsacle
|
| 73 |
+
if fix_resize is not None:
|
| 74 |
+
_upsacle = fix_resize / min(w, h)
|
| 75 |
+
w *= _upsacle
|
| 76 |
+
h *= _upsacle
|
| 77 |
+
w0, h0 = round(w), round(h)
|
| 78 |
+
w = int(np.round(w / 64.0)) * 64
|
| 79 |
+
h = int(np.round(h / 64.0)) * 64
|
| 80 |
+
x = img.resize((w, h), Image.BICUBIC)
|
| 81 |
+
x = np.array(x).round().clip(0, 255).astype(np.uint8)
|
| 82 |
+
x = x / 255 * 2 - 1
|
| 83 |
+
x = torch.tensor(x, dtype=torch.float32).permute(2, 0, 1)
|
| 84 |
+
return x, h0, w0
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def Tensor2PIL(x, h0, w0):
|
| 88 |
+
'''
|
| 89 |
+
Tensor[C, H, W], RGB, [-1, 1] -> PIL.Image
|
| 90 |
+
'''
|
| 91 |
+
x = x.unsqueeze(0)
|
| 92 |
+
x = interpolate(x, size=(h0, w0), mode='bicubic')
|
| 93 |
+
x = (x.squeeze(0).permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 94 |
+
return Image.fromarray(x)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def HWC3(x):
|
| 98 |
+
assert x.dtype == np.uint8
|
| 99 |
+
if x.ndim == 2:
|
| 100 |
+
x = x[:, :, None]
|
| 101 |
+
assert x.ndim == 3
|
| 102 |
+
H, W, C = x.shape
|
| 103 |
+
assert C == 1 or C == 3 or C == 4
|
| 104 |
+
if C == 3:
|
| 105 |
+
return x
|
| 106 |
+
if C == 1:
|
| 107 |
+
return np.concatenate([x, x, x], axis=2)
|
| 108 |
+
if C == 4:
|
| 109 |
+
color = x[:, :, 0:3].astype(np.float32)
|
| 110 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
| 111 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
| 112 |
+
y = y.clip(0, 255).astype(np.uint8)
|
| 113 |
+
return y
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def upscale_image(input_image, upscale, min_size=None, unit_resolution=64):
|
| 117 |
+
H, W, C = input_image.shape
|
| 118 |
+
H = float(H)
|
| 119 |
+
W = float(W)
|
| 120 |
+
H *= upscale
|
| 121 |
+
W *= upscale
|
| 122 |
+
if min_size is not None:
|
| 123 |
+
if min(H, W) < min_size:
|
| 124 |
+
_upsacle = min_size / min(W, H)
|
| 125 |
+
W *= _upsacle
|
| 126 |
+
H *= _upsacle
|
| 127 |
+
H = int(np.round(H / unit_resolution)) * unit_resolution
|
| 128 |
+
W = int(np.round(W / unit_resolution)) * unit_resolution
|
| 129 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if upscale > 1 else cv2.INTER_AREA)
|
| 130 |
+
img = img.round().clip(0, 255).astype(np.uint8)
|
| 131 |
+
return img
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def fix_resize(input_image, size=512, unit_resolution=64):
|
| 135 |
+
H, W, C = input_image.shape
|
| 136 |
+
H = float(H)
|
| 137 |
+
W = float(W)
|
| 138 |
+
upscale = size / min(H, W)
|
| 139 |
+
H *= upscale
|
| 140 |
+
W *= upscale
|
| 141 |
+
H = int(np.round(H / unit_resolution)) * unit_resolution
|
| 142 |
+
W = int(np.round(W / unit_resolution)) * unit_resolution
|
| 143 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if upscale > 1 else cv2.INTER_AREA)
|
| 144 |
+
img = img.round().clip(0, 255).astype(np.uint8)
|
| 145 |
+
return img
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def Numpy2Tensor(img):
|
| 150 |
+
'''
|
| 151 |
+
np.array[H, w, C] [0, 255] -> Tensor[C, H, W], RGB, [-1, 1]
|
| 152 |
+
'''
|
| 153 |
+
# size
|
| 154 |
+
img = np.array(img) / 255 * 2 - 1
|
| 155 |
+
img = torch.tensor(img, dtype=torch.float32).permute(2, 0, 1)
|
| 156 |
+
return img
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def Tensor2Numpy(x, h0=None, w0=None):
|
| 160 |
+
'''
|
| 161 |
+
Tensor[C, H, W], RGB, [-1, 1] -> PIL.Image
|
| 162 |
+
'''
|
| 163 |
+
if h0 is not None and w0 is not None:
|
| 164 |
+
x = x.unsqueeze(0)
|
| 165 |
+
x = interpolate(x, size=(h0, w0), mode='bicubic')
|
| 166 |
+
x = x.squeeze(0)
|
| 167 |
+
x = (x.permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 168 |
+
return x
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def convert_dtype(dtype_str):
|
| 172 |
+
if dtype_str == 'fp32':
|
| 173 |
+
return torch.float32
|
| 174 |
+
elif dtype_str == 'fp16':
|
| 175 |
+
return torch.float16
|
| 176 |
+
elif dtype_str == 'bf16':
|
| 177 |
+
return torch.bfloat16
|
| 178 |
+
else:
|
| 179 |
+
raise NotImplementedError
|