Move logs
Browse files- SUPIR/models/SUPIR_model.py +11 -2
SUPIR/models/SUPIR_model.py
CHANGED
|
@@ -47,18 +47,29 @@ class SUPIRModel(DiffusionEngine):
|
|
| 47 |
|
| 48 |
@torch.no_grad()
|
| 49 |
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
|
|
|
|
| 50 |
with torch.autocast("cuda", dtype=self.ae_dtype):
|
|
|
|
| 51 |
if is_stage1:
|
|
|
|
| 52 |
h = self.first_stage_model.denoise_encoder_s1(x)
|
| 53 |
else:
|
|
|
|
| 54 |
h = self.first_stage_model.denoise_encoder(x)
|
|
|
|
| 55 |
moments = self.first_stage_model.quant_conv(h)
|
|
|
|
| 56 |
posterior = DiagonalGaussianDistribution(moments)
|
|
|
|
| 57 |
if use_sample:
|
|
|
|
| 58 |
z = posterior.sample()
|
| 59 |
else:
|
|
|
|
| 60 |
z = posterior.mode()
|
|
|
|
| 61 |
z = self.scale_factor * z
|
|
|
|
| 62 |
return z
|
| 63 |
|
| 64 |
@torch.no_grad()
|
|
@@ -73,9 +84,7 @@ class SUPIRModel(DiffusionEngine):
|
|
| 73 |
'''
|
| 74 |
[N, C, H, W], [-1, 1], RGB
|
| 75 |
'''
|
| 76 |
-
print('Start batchify_denoise')
|
| 77 |
x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
|
| 78 |
-
print('End batchify_denoise')
|
| 79 |
return self.decode_first_stage(x)
|
| 80 |
|
| 81 |
@torch.no_grad()
|
|
|
|
| 47 |
|
| 48 |
@torch.no_grad()
|
| 49 |
def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
|
| 50 |
+
print('encode_first_stage_with_denoise 1')
|
| 51 |
with torch.autocast("cuda", dtype=self.ae_dtype):
|
| 52 |
+
print('encode_first_stage_with_denoise 2')
|
| 53 |
if is_stage1:
|
| 54 |
+
print('encode_first_stage_with_denoise 3')
|
| 55 |
h = self.first_stage_model.denoise_encoder_s1(x)
|
| 56 |
else:
|
| 57 |
+
print('encode_first_stage_with_denoise 4')
|
| 58 |
h = self.first_stage_model.denoise_encoder(x)
|
| 59 |
+
print('encode_first_stage_with_denoise 5')
|
| 60 |
moments = self.first_stage_model.quant_conv(h)
|
| 61 |
+
print('encode_first_stage_with_denoise 6')
|
| 62 |
posterior = DiagonalGaussianDistribution(moments)
|
| 63 |
+
print('encode_first_stage_with_denoise 7')
|
| 64 |
if use_sample:
|
| 65 |
+
print('encode_first_stage_with_denoise 8')
|
| 66 |
z = posterior.sample()
|
| 67 |
else:
|
| 68 |
+
print('encode_first_stage_with_denoise 9')
|
| 69 |
z = posterior.mode()
|
| 70 |
+
print('encode_first_stage_with_denoise 10')
|
| 71 |
z = self.scale_factor * z
|
| 72 |
+
print('encode_first_stage_with_denoise 11')
|
| 73 |
return z
|
| 74 |
|
| 75 |
@torch.no_grad()
|
|
|
|
| 84 |
'''
|
| 85 |
[N, C, H, W], [-1, 1], RGB
|
| 86 |
'''
|
|
|
|
| 87 |
x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
|
|
|
|
| 88 |
return self.decode_first_stage(x)
|
| 89 |
|
| 90 |
@torch.no_grad()
|