Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -12,16 +12,14 @@ from keras.models import load_model
|
|
12 |
|
13 |
|
14 |
def text_clf(text):
|
15 |
-
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
|
16 |
-
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
vocab_file = "vocab.txt" # 词汇表
|
18 |
tokenizer = BertTokenizer(vocab_file)
|
19 |
# 加载模型
|
20 |
config = BertConfig.from_pretrained("nanaaaa/emotion_chinese_english")
|
21 |
model = XLMRobertaForSequenceClassification.from_pretrained("nanaaaa/emotion_chinese_english", config=config)
|
22 |
-
|
23 |
inputs = tokenizer(text, return_tensors="pt")
|
24 |
-
|
25 |
# 模型推断
|
26 |
outputs = model(**inputs)
|
27 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
@@ -144,4 +142,4 @@ with gr.Blocks() as demo:
|
|
144 |
audio_button.click(fn=audio_clf, inputs=audio, outputs=audio_output)
|
145 |
cir_button.click(fn=cir_clf, inputs=[cir_l, cir_r], outputs=cir_output)
|
146 |
|
147 |
-
demo.launch(
|
|
|
12 |
|
13 |
|
14 |
def text_clf(text):
|
|
|
|
|
15 |
vocab_file = "vocab.txt" # 词汇表
|
16 |
tokenizer = BertTokenizer(vocab_file)
|
17 |
# 加载模型
|
18 |
config = BertConfig.from_pretrained("nanaaaa/emotion_chinese_english")
|
19 |
model = XLMRobertaForSequenceClassification.from_pretrained("nanaaaa/emotion_chinese_english", config=config)
|
20 |
+
|
21 |
inputs = tokenizer(text, return_tensors="pt")
|
22 |
+
|
23 |
# 模型推断
|
24 |
outputs = model(**inputs)
|
25 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
|
|
142 |
audio_button.click(fn=audio_clf, inputs=audio, outputs=audio_output)
|
143 |
cir_button.click(fn=cir_clf, inputs=[cir_l, cir_r], outputs=cir_output)
|
144 |
|
145 |
+
demo.launch()
|