File size: 8,579 Bytes
4fe8a03
 
 
 
 
f07a76e
 
388bced
4fe8a03
388bced
f3f2130
4fe8a03
 
 
 
 
 
 
 
 
 
e4b743f
78ed805
da68b17
 
e9a8ede
 
 
 
fb6ebd2
 
e9a8ede
4fe8a03
bf86616
4fe8a03
f07a76e
 
341a79f
4e5aa69
4fe8a03
eb695d4
 
 
 
 
 
 
 
c877caa
58d82ec
 
c652a61
e9a8ede
4fe8a03
e9a8ede
4fe8a03
 
 
 
 
 
 
 
 
 
 
 
b72bc42
4fe8a03
 
 
 
 
03e689c
43e3ada
 
4fe8a03
b934676
43e3ada
 
4fe8a03
 
b72bc42
4fe8a03
 
b934676
4fe8a03
 
 
77001b5
54725b9
27614c8
81ab720
 
 
 
4fe8a03
e89b97c
 
 
 
 
 
8cbf8fc
07170ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039819f
f07a76e
8cbf8fc
 
 
e89b97c
8cbf8fc
 
e89b97c
b764f3e
f07a76e
27614c8
4fe8a03
43e3ada
4fe8a03
43e3ada
 
 
 
 
 
 
 
 
 
 
 
 
 
27614c8
8cbf8fc
e89b97c
 
 
 
 
7815235
 
25be80a
 
 
 
 
 
 
7815235
 
 
e74f020
ea94c7e
c1b0716
71d3467
8cbf8fc
391805b
81ab720
cb140ef
 
344e7b1
b7956c7
8cafaa1
6b5276f
 
89f00b4
8cafaa1
81ab720
27614c8
fdebc5f
 
7ef424f
 
 
 
 
27614c8
7ef424f
2b5f248
 
81ab720
cb140ef
2b5f248
 
 
 
 
 
 
 
 
 
 
 
81ab720
2b5f248
4fe8a03
bf86616
4fe8a03
 
bf86616
4fe8a03
 
e9a8ede
 
bf86616
e9a8ede
 
bf86616
e9a8ede
bf86616
0759b36
e5a7845
 
0136bd4
8d3471b
2e45868
770c900
954e78c
 
039819f
 
 
 
 
 
f07a76e
b2f154f
 
 
f07a76e
bb4e5fc
 
 
4eba62e
bb4e5fc
 
 
4024d85
bb4e5fc
 
 
e9a8ede
0d6dac3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
from ecogsphere import ecf

import pandas as pd 
import math
import json

import sqlite3
import huggingface_hub
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler

import random
import time
import requests

from huggingface_hub import hf_hub_download

#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")

from huggingface_hub import login
from datasets import load_dataset

#dataset = load_dataset("csv", data_files="./data.csv")


DB_FILE = "./reviewsE.db"

#TOKEN = os.environ.get('HF_KEY')
#TOKEN=os.environ.get('RA_TOKEN')
#print (TOKEN[-1])
#TOKEN2 = HF_TOKEN

#repo = huggingface_hub.Repository(
#    local_dir="data",
#    repo_type="dataset",
#    clone_from="CognitiveScience/csdhdata",
#    use_auth_token=TOKEN
#)
#repo.git_pull()




#login(token=TOKEN2)

# Set db to latest
#shutil.copyfile("./data/reviews01.db", DB_FILE)

# Create table if it doesn't already exist

db = sqlite3.connect(DB_FILE)
try:
    db.execute("SELECT * FROM reviews").fetchall()
    db.close()
except sqlite3.OperationalError:
    db.execute(
        '''
        CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
                              created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
                              name TEXT, rate INTEGER, celsci TEXT)
        ''')
    db.commit()
    db.close()

def get_latest_reviews(db: sqlite3.Connection):
    reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
    reviews = db.execute("SELECT * FROM reviews2 ORDER BY id DESC limit 100").fetchall()

    total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
    reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "rate", "celsci"])
    reviews2 = pd.DataFrame(reviews2, columns=["id","title", "link","channel", "description", "views", "uploaded", "duration", "durationString"])
    return reviews2, reviews, total_reviews


def ccogsphere(name: str, rate: int, celsci: str):
    db = sqlite3.connect(DB_FILE)
    cursor = db.cursor()
    cursor.execute("INSERT INTO reviews(name, rate, celsci) VALUES(?,?,?)", [name, rate, celsci])
    db.commit()
    reviews, total_reviews = get_latest_reviews(db)
    db.close()
    r = requests.post(url='https://ccml-persistent-data2.hf.space/api/predict/', json={"data": [name,celsci]})
    #demo.load()
    inp=celsci.split()
    inp=inp[0] + "+" + inp[1]
    result=ecf(inp)
    df=pd.DataFrame.from_dict(result["videos"])
    return df,reviews, total_reviews

def ccogsphere2(celsci: str):
    result=run_ecs(celscie)
    df = pd.DataFrame.from_dict(result["videos"])

    gr.Dataframe(df)
    return result

def run_actr():
    from python_actr import log_everything

    #code1="tim = MyAgent()"
    #code2="subway=MyEnv()"
    #code3="subway.agent=tim"
    #code4="log_everything(subway)"]
    from dcogsphere import RockPaperScissors
    from dcogsphere import ProceduralPlayer
    #from dcogsphere import logy

    env=RockPaperScissors()
    env.model1=ProceduralPlayer()
    env.model1.choice=env.choice1
    env.model2=ProceduralPlayer()
    env.model2.choice=env.choice2
    env.run()


def run_ecs(inp):
    try:
        result=ecf(inp)
        df=pd.DataFrame.from_dict(result["videos"])
    except sqlite3.OperationalError:
        print ("db error")
    return df

  
def load_data(celsci: str):
    db = sqlite3.connect(DB_FILE)
    df, reviews, total_reviews = get_latest_reviews(db)
    db.close()
    #if celsci!="":
    #    inp=celsci.split()
    #    inp=inp[0] + "+" + inp[1]
    #    result=ecf(inp)
    #    df=pd.DataFrame.from_dict(result["videos"])
    #else:
    #    # Creating a sample dataframe
    #    df = pd.DataFrame({
    #        "A" : [14, 4, 5, 4, 1], 
    #        "B" : [5, 2, 54, 3, 2], 
    #        "C" : [20, 20, 7, 3, 8], 
    #        "D" : [14, 3, 6, 2, 6], 
    #        "E" : [23, 45, 64, 32, 23]
    #    }) 
    return df, reviews, total_reviews
def load_data2():
    #result=run_ecs(celscie)
    #df = pd.DataFrame.from_dict(result["videos"])
    reviews2=""
    #gr.Dataframe(df)
    return reviews2

# Creating a sample dataframe
#df = pd.DataFrame({
#    "A" : [14, 4, 5, 4, 1], 
#    "B" : [5, 2, 54, 3, 2], 
#    "C" : [20, 20, 7, 3, 8], 
#    "D" : [14, 3, 6, 2, 6], 
#    "E" : [23, 45, 64, 32, 23]
#}) 

# Applying style to highlight the maximum value in each row

css="footer {visibility: hidden}"
# Applying style to highlight the maximum value in each row
#styler = df.style.highlight_max(color = 'lightgreen', axis = 0)
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            data2 = gr.Dataframe() #styler)
            data = gr.Dataframe() #styler)
            count = gr.Number(label="Rates!")
    with gr.Row():
        with gr.Column():
            name = gr.Textbox(label="a") #, placeholder="What is your name?")
            rate =  gr.Textbox(label="b") #, placeholder="What is your name?") #gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
            celsci = gr.Textbox(label="c") #, lines=10, placeholder="Do you have any feedback on gradio?")
            #run_actr()
            submit = gr.Button(value=".")
            submit.click(ccogsphere, [name, rate, celsci], [data2, data, count])
            demo.load(load_data, celsci, [data2, data, count])
            @name.change(inputs=name, outputs=celsci,_js="window.location.reload()")
            @rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
            @celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()")  
            
            def secwork(name):
                #if name=="abc":
                #run_code()
                load_data("")
                #return "Hello " + name + "!"
    with gr.Row():
        with gr.Column():
            data3 = gr.Dataframe() #styler)
            count2 = gr.Number(label="Rates2!",value=13)
    with gr.Row():
        with gr.Column():
            celscie = gr.Textbox(label="e",value="robert+west") #, placeholder="What is your name?")

            #result=run_ecs(celscie)
            #df = pd.DataFrame.from_dict(result["videos"])

            #gr.Dataframe(df)

            celsci2 = gr.Textbox(label="c2") #, lines=10, placeholder="Do you have any feedback on gradio?")
            #run_actr()
            submit2 = gr.Button(value="E")
            submit2.click(run_ecs, [celsci2], [data3])
            #demo.load(load_data2, None, [data2])
def backup_db():
    shutil.copyfile(DB_FILE, "./reviews1E.db")
    db = sqlite3.connect(DB_FILE)
    reviews = db.execute("SELECT * FROM reviews").fetchall()
    pd.DataFrame(reviews).to_csv("./reviewsE.csv", index=False)
    print("updating db")
    repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
    
def backup_db_csv():
    shutil.copyfile(DB_FILE, "./reviews2E.db")
    db = sqlite3.connect(DB_FILE)
    reviews = db.execute("SELECT * FROM reviews").fetchall()
    pd.DataFrame(reviews).to_csv("./reviews2E.csv", index=False)
    print("updating db csv")
    dataset = load_dataset("csv", data_files="./reviews2E.csv")
    repo.push_to_hub("CognitiveScience/csdhdata", blocking=False) #, commit_message=f"Updating data-csv at {datetime.datetime.now()}")
    #path1=hf_hub_url()
    #print (path1)
    #hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.csv")
    #hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.db")
    #hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.md")
    #hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.md")


#def load_data2():
#    db = sqlite3.connect(DB_FILE)
#    reviews, total_reviews = get_latest_reviews(db)
#    #db.close()
#    demo.load(load_data,None, [reviews, total_reviews])
#    #return reviews, total_reviews

#scheduler0 = BackgroundScheduler()
#scheduler0.add_job(func=run_ecs, trigger="interval", seconds=180000)
#scheduler0.start()

#scheduler1 = BackgroundScheduler()
#scheduler1.add_job(func=run_actr, trigger="interval", seconds=3600)
#scheduler1.start()

#scheduler2 = BackgroundScheduler()
#scheduler2.add_job(func=backup_db, trigger="interval", seconds=3633000)
#scheduler2.start()

#scheduler3 = BackgroundScheduler()
#scheduler3.add_job(func=backup_db_csv, trigger="interval", seconds=3666000)
#scheduler3.start()

demo.launch()