CogSphere / celscis.py
CognitiveScience's picture
Rename celscis to celscis.py
a693a61
# Define a dictionary called celscilist
celscilist = {
'Anil Seth': { 'info': { 'views': 14187265 , 'link': "youtubelink", 'student': "studentname" } },
'Andrew Huberman 2': { 'info': { 'views': 620004 , 'link': "youtubelink", 'student': "studentname" } },
'Donald Hoffman': { 'info': { 'views': 2504274 , 'link': "youtubelink", 'student': "studentname" } },
'Doug Hofstadter': { 'info': { 'views': 75493 , 'link': "youtubelink", 'student': "studentname" } },
'Howard Gardner': { 'info': { 'views': 1508453 , 'link': "youtubelink", 'student': "studentname" } },
'Janelle Shane': { 'info': { 'views': 2755716 , 'link': "youtubelink", 'student': "studentname" } },
'Daniel Kahneman': { 'info': { 'views': 1274170 , 'link': "youtubelink", 'student': "studentname" } },
'Elizabeth Loftus': { 'info': { 'views': 2190333 , 'link': "youtubelink", 'student': "studentname" } },
'Elizabeth Loftus 2': { 'info': { 'views': 2975 , 'link': "youtubelink", 'student': "studentname" } },
'Patricia Churchland': { 'info': { 'views': 8026 , 'link': "youtubelink", 'student': "studentname" } },
'Bret Weinstein': { 'info': { 'views': 41610 , 'link': "youtubelink", 'student': "studentname" } },
'Andrew Huberman': { 'info': { 'views': 55561 , 'link': "youtubelink", 'student': "studentname" } },
'Tom Scott': { 'info': { 'views': 2555516 , 'link': "youtubelink", 'student': "studentname" } },
'Melanie Mitchell': { 'info': { 'views': 44875 , 'link': "youtubelink", 'student': "studentname" } },
'Jordan Peterson': { 'info': { 'views': 236000 , 'link': "youtubelink", 'student': "studentname" } },
'Timnit Gebru': { 'info': { 'views': 79338 , 'link': "youtubelink", 'student': "studentname" } },
'Amy Cuddy': { 'info': { 'views': 23700189 , 'link': "youtubelink", 'student': "studentname" } },
'Mihaly Csikszentmihalyi': { 'info': { 'views': 952791 , 'link': "youtubelink", 'student': "studentname" } },
'Martha Nussbaum': { 'info': { 'views': 41046 , 'link': "youtubelink", 'student': "studentname" } },
'Noam Chomsky': { 'info': { 'views': 26042 , 'link': "youtubelink", 'student': "studentname" } },
'Russell A Barkley': { 'info': { 'views': 786116 , 'link': "youtubelink", 'student': "studentname" } },
'Slavoj Žižek': { 'info': { 'views': 153187 , 'link': "youtubelink", 'student': "studentname" } },
'Nathaniel Drew': { 'info': { 'views': 126828 , 'link': "youtubelink", 'student': "studentname" } },
'Lara Boyd': { 'info': { 'views': 39097670 , 'link': "youtubelink", 'student': "studentname" } },
'Yuval Noah Harari': { 'info': { 'views': 439139 , 'link': "youtubelink", 'student': "studentname" } },
'Jordan Peterson 2': { 'info': { 'views': 672531 , 'link': "youtubelink", 'student': "studentname" } },
'Yuval Noah Harari 2': { 'info': { 'views': 1859772 , 'link': "youtubelink", 'student': "studentname" } },
'Joscha Bach': { 'info': { 'views': 528348 , 'link': "youtubelink", 'student': "studentname" } },
'Poppy Crum': { 'info': { 'views': 133328 , 'link': "youtubelink", 'student': "studentname" } },
'Ryan Holiday': { 'info': { 'views': 34846 , 'link': "youtubelink", 'student': "studentname" } },
'Marvin Chun': { 'info': { 'views': 76604 , 'link': "youtubelink", 'student': "studentname" } },
'Jim Davies': { 'info': { 'views': 27628 , 'link': "youtubelink", 'student': "studentname" } },
}
# Extract 'views' values into a list
views_list = [item['info']['views'] for item in celscilist.values()]
# Calculate the sum of 'views' values
def calculate_average(views_list):
sum = 0
for view in views_list:
sum += view
return sum / len(views_list)
# Define a class called Celsci
class Celsci:
@staticmethod
def iscelsci(x):
y = "Not Above Average: "
if x > calculate_average(views_list):
y = "Above Average: "
return y
@staticmethod
def iscelscinow(x):
y = "Not Above Average: "
if x > calculate_average(views_list):
y = "Above Average: "
return y
# Define a function called checkcelsci
def checkcelsci(x):
result = Celsci.iscelsci(celscilist[x]['info']['views'])
return result
# Find the maximum value in views_list
max_views = max(views_list)
# Define a function to find the key by views value
def find_key_by_views(obj, views_value):
for key, value in obj.items():
if value['info']['views'] == views_value:
return key
# Call the function with data and max_views as arguments
no1 = find_key_by_views(celscilist, max_views)
def celsciresult(celsciname):
# Print the results
print(celscilist[celsciname]['info']['views'], checkcelsci(celsciname), int(calculate_average(views_list)), no1, max_views)
# Define a function called print_celscilist
def print_celscilist(celscilist):
# Loop through each key and value in celscilist
for key, value in celscilist.items():
# Print the key and the views value
print(key, value['info']['views'], checkcelsci(key), int(calculate_average(views_list)), no1, max_views)
# Call the function with celscilist as an argument
#print_celscilist(celscilist)