Spaces:
Runtime error
Runtime error
Commit
·
2b49fc4
1
Parent(s):
958c393
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,10 +9,10 @@ import pandas as pd
|
|
| 9 |
import math
|
| 10 |
import json
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
#import pandas as pd
|
| 15 |
-
|
| 16 |
import os
|
| 17 |
import datetime
|
| 18 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
@@ -21,30 +21,27 @@ import random
|
|
| 21 |
import time
|
| 22 |
#import requests
|
| 23 |
|
| 24 |
-
|
| 25 |
-
#repo = huggingface_hub.HfRepository(repo_id="lysandre/test-model", token=token)
|
| 26 |
|
| 27 |
-
# Clone the repository to a local directory
|
| 28 |
-
#repo.clone_from_hub()
|
| 29 |
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")
|
| 30 |
|
| 31 |
-
|
| 32 |
from datasets import load_dataset
|
| 33 |
|
| 34 |
#dataset = load_dataset("csv", data_files="./data.csv")
|
| 35 |
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
|
| 49 |
#TOKEN2 = HF_TOKEN
|
| 50 |
|
|
@@ -56,47 +53,39 @@ from datasets import load_dataset
|
|
| 56 |
|
| 57 |
# Create table if it doesn't already exist
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def get_latest_reviews(
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
reviews = df.DataFrame(reviews, columns=["id", "date_created", "name", "view", "duration"])
|
| 82 |
-
|
| 83 |
-
except: # sqlite3.OperationalError:
|
| 84 |
-
df=pd.DataFrame()
|
| 85 |
-
print ("db ...")
|
| 86 |
-
#reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
|
| 87 |
-
#total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
|
| 88 |
-
total_reviews=reviews.count()[0]
|
| 89 |
return reviews, total_reviews
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
def ccogsphere(name: str, rate: int, celsci: str):
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
#try:
|
| 102 |
celsci2=celsci.split()
|
|
@@ -110,13 +99,11 @@ def ccogsphere(name: str, rate: int, celsci: str):
|
|
| 110 |
duration = str(row["duration"])
|
| 111 |
print(view, duration)
|
| 112 |
#celsci=celsci+celsci2
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
reviews=
|
| 117 |
-
|
| 118 |
-
#reviews, total_reviews = get_latest_reviews(db)
|
| 119 |
-
#db.close()
|
| 120 |
r = requests.post(url='https://ccml-persistent-data2.hf.space/api/predict/', json={"data": [celsci + " ", celsci2]})
|
| 121 |
|
| 122 |
return reviews, total_reviews
|
|
@@ -143,37 +130,33 @@ def run_ecs(inp):
|
|
| 143 |
try:
|
| 144 |
result=ecf(inp)
|
| 145 |
df=pd.DataFrame.from_dict(result["videos"])
|
| 146 |
-
except
|
| 147 |
-
|
| 148 |
-
print ("db ...")
|
| 149 |
|
| 150 |
-
|
| 151 |
|
| 152 |
-
|
| 153 |
#cursor = db.cursor()
|
| 154 |
#cursor.execute("INSERT INTO reviews2(title, link, thumbnail,channel, description, views, uploaded, duration, durationString) VALUES(?,?,?,?,?,?,?,?,?)", [title, link, thumbnail,channel, description, views, uploaded, duration, durationString])
|
| 155 |
-
|
| 156 |
|
| 157 |
#db.commit()
|
| 158 |
-
|
| 159 |
-
|
| 160 |
#print ("print000", total_reviews2,reviews2)
|
| 161 |
-
reviews2=df
|
| 162 |
-
total_reviews2=reviews2.count()[0]
|
| 163 |
-
|
| 164 |
return reviews2, total_reviews2
|
| 165 |
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
css="footer {visibility: hidden}"
|
| 179 |
# Applying style to highlight the maximum value in each row
|
|
@@ -191,14 +174,61 @@ with gr.Blocks(css=css) as demo:
|
|
| 191 |
#run_actr()
|
| 192 |
submit = gr.Button(value=".")
|
| 193 |
submit.click(ccogsphere, [name, rate, celsci], [data, count])
|
| 194 |
-
demo.load(
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
#if name=="abc":
|
| 201 |
#run_code()
|
| 202 |
-
|
| 203 |
#return "Hello " + name + "!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
demo.launch()
|
|
|
|
| 9 |
import math
|
| 10 |
import json
|
| 11 |
|
| 12 |
+
import sqlite3
|
| 13 |
+
import huggingface_hub
|
| 14 |
#import pandas as pd
|
| 15 |
+
import shutil
|
| 16 |
import os
|
| 17 |
import datetime
|
| 18 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
|
| 21 |
import time
|
| 22 |
#import requests
|
| 23 |
|
| 24 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
| 25 |
|
|
|
|
|
|
|
| 26 |
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./reviews.csv")
|
| 27 |
|
| 28 |
+
from huggingface_hub import login
|
| 29 |
from datasets import load_dataset
|
| 30 |
|
| 31 |
#dataset = load_dataset("csv", data_files="./data.csv")
|
| 32 |
|
| 33 |
|
| 34 |
+
DB_FILE = "./reviewsitr.db"
|
| 35 |
|
| 36 |
+
TOKEN = os.environ.get('HF_KEY')
|
| 37 |
|
| 38 |
+
repo = huggingface_hub.Repository(
|
| 39 |
+
local_dir="data",
|
| 40 |
+
repo_type="dataset",
|
| 41 |
+
clone_from="CognitiveScience/csdhdata",
|
| 42 |
+
use_auth_token=TOKEN
|
| 43 |
+
)
|
| 44 |
+
repo.git_pull()
|
| 45 |
|
| 46 |
#TOKEN2 = HF_TOKEN
|
| 47 |
|
|
|
|
| 53 |
|
| 54 |
# Create table if it doesn't already exist
|
| 55 |
|
| 56 |
+
db = sqlite3.connect(DB_FILE)
|
| 57 |
+
try:
|
| 58 |
+
db.execute("SELECT * FROM reviews").fetchall()
|
| 59 |
+
#db.execute("SELECT * FROM reviews2").fetchall()
|
| 60 |
+
|
| 61 |
+
db.close()
|
| 62 |
+
except sqlite3.OperationalError:
|
| 63 |
+
db.execute(
|
| 64 |
+
'''
|
| 65 |
+
CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
| 66 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
|
| 67 |
+
name TEXT, view TEXT, duration TEXT)
|
| 68 |
+
''')
|
| 69 |
+
db.commit()
|
| 70 |
+
db.close()
|
| 71 |
+
|
| 72 |
+
db = sqlite3.connect(DB_FILE)
|
| 73 |
+
|
| 74 |
+
def get_latest_reviews(db: sqlite3.Connection):
|
| 75 |
+
reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 100").fetchall()
|
| 76 |
+
total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
|
| 77 |
+
reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "view", "duration"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
return reviews, total_reviews
|
| 79 |
|
| 80 |
+
def get_latest_reviews2(db: sqlite3.Connection):
|
| 81 |
+
reviews2 = db.execute("SELECT * FROM reviews2 ORDER BY id DESC limit 100").fetchall()
|
| 82 |
+
total_reviews2 = db.execute("Select COUNT(id) from reviews2").fetchone()[0]
|
| 83 |
+
reviews2 = pd.DataFrame(reviews2, columns=["id","title", "link","channel", "description", "views", "uploaded", "duration", "durationString"])
|
| 84 |
+
return reviews2, total_reviews2
|
| 85 |
|
| 86 |
def ccogsphere(name: str, rate: int, celsci: str):
|
| 87 |
+
db = sqlite3.connect(DB_FILE)
|
| 88 |
+
cursor = db.cursor()
|
| 89 |
|
| 90 |
#try:
|
| 91 |
celsci2=celsci.split()
|
|
|
|
| 99 |
duration = str(row["duration"])
|
| 100 |
print(view, duration)
|
| 101 |
#celsci=celsci+celsci2
|
| 102 |
+
cursor.execute("INSERT INTO reviews(name, view, duration) VALUES(?,?,?)", [celsci+str(index+1), view, duration])
|
| 103 |
+
db.commit()
|
| 104 |
+
|
| 105 |
+
reviews, total_reviews = get_latest_reviews(db)
|
| 106 |
+
db.close()
|
|
|
|
|
|
|
| 107 |
r = requests.post(url='https://ccml-persistent-data2.hf.space/api/predict/', json={"data": [celsci + " ", celsci2]})
|
| 108 |
|
| 109 |
return reviews, total_reviews
|
|
|
|
| 130 |
try:
|
| 131 |
result=ecf(inp)
|
| 132 |
df=pd.DataFrame.from_dict(result["videos"])
|
| 133 |
+
except sqlite3.OperationalError:
|
| 134 |
+
print ("db error")
|
|
|
|
| 135 |
|
| 136 |
+
df=df.drop(df.columns[4], axis=1)
|
| 137 |
|
| 138 |
+
db = sqlite3.connect(DB_FILE)
|
| 139 |
#cursor = db.cursor()
|
| 140 |
#cursor.execute("INSERT INTO reviews2(title, link, thumbnail,channel, description, views, uploaded, duration, durationString) VALUES(?,?,?,?,?,?,?,?,?)", [title, link, thumbnail,channel, description, views, uploaded, duration, durationString])
|
| 141 |
+
df.to_sql('reviews2', db, if_exists='replace', index=False)
|
| 142 |
|
| 143 |
#db.commit()
|
| 144 |
+
reviews2, total_reviews2 = get_latest_reviews(db)
|
| 145 |
+
db.close()
|
| 146 |
#print ("print000", total_reviews2,reviews2)
|
|
|
|
|
|
|
|
|
|
| 147 |
return reviews2, total_reviews2
|
| 148 |
|
| 149 |
|
| 150 |
+
def load_data():
|
| 151 |
+
db = sqlite3.connect(DB_FILE)
|
| 152 |
+
reviews, total_reviews = get_latest_reviews(db)
|
| 153 |
+
db.close()
|
| 154 |
+
return reviews, total_reviews
|
| 155 |
+
def load_data2():
|
| 156 |
+
db = sqlite3.connect(DB_FILE)
|
| 157 |
+
reviews2, total_reviews2 = get_latest_reviews2(db)
|
| 158 |
+
db.close()
|
| 159 |
+
return reviews2, total_reviews2
|
| 160 |
|
| 161 |
css="footer {visibility: hidden}"
|
| 162 |
# Applying style to highlight the maximum value in each row
|
|
|
|
| 174 |
#run_actr()
|
| 175 |
submit = gr.Button(value=".")
|
| 176 |
submit.click(ccogsphere, [name, rate, celsci], [data, count])
|
| 177 |
+
demo.load(load_data, None, [data, count])
|
| 178 |
+
@name.change(inputs=name, outputs=celsci,_js="window.location.reload()")
|
| 179 |
+
@rate.change(inputs=rate, outputs=name,_js="window.location.reload()")
|
| 180 |
+
@celsci.change(inputs=celsci, outputs=rate,_js="window.location.reload()")
|
| 181 |
|
| 182 |
+
def secwork(name):
|
| 183 |
#if name=="abc":
|
| 184 |
#run_code()
|
| 185 |
+
load_data()
|
| 186 |
#return "Hello " + name + "!"
|
| 187 |
+
def backup_db():
|
| 188 |
+
shutil.copyfile(DB_FILE, "./reviews.db")
|
| 189 |
+
db = sqlite3.connect(DB_FILE)
|
| 190 |
+
reviews = db.execute("SELECT * FROM reviews").fetchall()
|
| 191 |
+
pd.DataFrame(reviews).to_csv("./reviews.csv", index=False)
|
| 192 |
+
print("updating db")
|
| 193 |
+
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
|
| 194 |
+
|
| 195 |
+
def backup_db_csv():
|
| 196 |
+
shutil.copyfile(DB_FILE, "./reviews2.db")
|
| 197 |
+
db = sqlite3.connect(DB_FILE)
|
| 198 |
+
reviews = db.execute("SELECT * FROM reviews").fetchall()
|
| 199 |
+
pd.DataFrame(reviews).to_csv("./reviews2.csv", index=False)
|
| 200 |
+
print("updating db csv")
|
| 201 |
+
dataset = load_dataset("csv", data_files="./reviews2.csv")
|
| 202 |
+
repo.push_to_hub("CognitiveScience/csdhdata", blocking=False) #, commit_message=f"Updating data-csv at {datetime.datetime.now()}")
|
| 203 |
+
#path1=hf_hub_url()
|
| 204 |
+
#print (path1)
|
| 205 |
+
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.csv")
|
| 206 |
+
#hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.db")
|
| 207 |
+
#hf_hub_download(repo_id="CogSphere/aCogSphere", filename="./*.md")
|
| 208 |
+
#hf_hub_download(repo_id="CognitiveScience/csdhdata", filename="./*.md")
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
#def load_data2():
|
| 212 |
+
# db = sqlite3.connect(DB_FILE)
|
| 213 |
+
# reviews, total_reviews = get_latest_reviews(db)
|
| 214 |
+
# #db.close()
|
| 215 |
+
# demo.load(load_data,None, [reviews, total_reviews])
|
| 216 |
+
# #return reviews, total_reviews
|
| 217 |
+
|
| 218 |
+
#scheduler1 = BackgroundScheduler()
|
| 219 |
+
#scheduler1.add_job(func=run_actr, trigger="interval", seconds=10)
|
| 220 |
+
#scheduler1.start()
|
| 221 |
+
|
| 222 |
+
scheduler1 = BackgroundScheduler()
|
| 223 |
+
scheduler1.add_job(func=load_data, trigger="interval", seconds=5)
|
| 224 |
+
scheduler1.start()
|
| 225 |
+
|
| 226 |
+
scheduler2 = BackgroundScheduler()
|
| 227 |
+
scheduler2.add_job(func=backup_db, trigger="interval", seconds=3633)
|
| 228 |
+
scheduler2.start()
|
| 229 |
+
|
| 230 |
+
scheduler3 = BackgroundScheduler()
|
| 231 |
+
scheduler3.add_job(func=backup_db_csv, trigger="interval", seconds=3666)
|
| 232 |
+
scheduler3.start()
|
| 233 |
+
|
| 234 |
demo.launch()
|