Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig | |
import spaces | |
import torch | |
from safetensors import safe_open | |
from jaxtyping import Float, Int | |
from typing import List, Callable | |
from torch import Tensor | |
from threading import Thread | |
import einops | |
model_id = "MaziyarPanahi/Meta-Llama-3-70B-Instruct-GPTQ" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
quantize_config = BaseQuantizeConfig( | |
bits=4, | |
group_size=128, | |
desc_act=False | |
) | |
model = AutoGPTQForCausalLM.from_quantized( | |
model_id, | |
device="cuda:0", | |
use_safetensors=True, | |
disable_exllamav2=True, | |
quantize_config=quantize_config).eval() | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device=torch.device("cuda")) | |
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True) | |
thread = Thread( | |
target=model.generate, | |
kwargs={ | |
"inputs": inputs, | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
"streamer": streamer, | |
}, | |
) | |
thread.start() | |
for new_text in streamer: | |
token = new_text.choices[0].delta.content | |
response += token | |
yield response | |
def get_orthogonalized_matrix(matrix: Float[Tensor, '... d_model'], vec: Float[Tensor, 'd_model']) -> Float[Tensor, '... d_model']: | |
device = matrix.device | |
vec = vec.to(device) | |
proj = einops.einsum(matrix, vec.view(-1, 1), '... d_model, d_model single -> ... single') * vec | |
return matrix - proj | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
# get refusal_dir from refusal_dir.safetensors file. | |
with safe_open("refusal_dir.safetensors", framework="pt", device="cpu") as f: | |
refusal_dir = f.get_tensor("refusal_dir") | |
refusal_dir = refusal_dir.cpu().float() | |
model.model.embed_tokens.weight.data = get_orthogonalized_matrix(model.model.embed_tokens.weight, refusal_dir) | |
for block in model.model.layers: | |
block.self_attn.o_proj.weight.data = get_orthogonalized_matrix(block.self_attn.o_proj.weight, refusal_dir) | |
block.mlp.down_proj.weight.data = get_orthogonalized_matrix(block.mlp.down_proj.weight.T, refusal_dir).T | |
demo.launch() |