Spaces:
Paused
Paused
| import os | |
| import openai | |
| import wget | |
| import streamlit as st | |
| from PIL import Image | |
| from serpapi import GoogleSearch | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| from bokeh.models.widgets import Button | |
| from bokeh.models.widgets.buttons import Button | |
| from bokeh.models import CustomJS | |
| from streamlit_bokeh_events import streamlit_bokeh_events | |
| import base64 | |
| from streamlit_player import st_player | |
| from pytube import YouTube | |
| from pytube import Search | |
| import io | |
| import warnings | |
| from PIL import Image | |
| from stability_sdk import client | |
| import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation | |
| from datetime import datetime | |
| from google.oauth2 import service_account | |
| from googleapiclient.discovery import build | |
| import wget | |
| import urllib.request | |
| import sqlite3 | |
| import pandas as pd | |
| import pandasql as ps | |
| # import sounddevice as sd | |
| # import soundfile as sf | |
| def clean(value): | |
| val = value.replace("'",'').replace("[",'').replace("]",'') | |
| return val | |
| def save_uploadedfile(uploadedfile): | |
| with open(uploadedfile.name,"wb") as f: | |
| f.write(uploadedfile.getbuffer()) | |
| def gpt3(texts): | |
| # openai.api_key = os.environ["Secret"] | |
| openai.api_key = st.secrets['OPENAI_KEY'] #'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'#'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' #'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' | |
| response = openai.Completion.create( | |
| engine="gpt-3.5-turbo", | |
| prompt= texts, | |
| temperature=temp, | |
| max_tokens=750, | |
| top_p=1, | |
| frequency_penalty=0.0, | |
| presence_penalty=0.0, | |
| stop = (";", "/*", "</code>")) | |
| x = response.choices[0].text | |
| return x | |
| def warning(sqlOutput): | |
| dl = [] | |
| lst = ['DELETE','DROP','TRUNCATE','MERGE','ALTER','UPDATE','INSERT'] | |
| op2 = " ".join(sqlOutput.split()) | |
| op3 = op2.split(' ') | |
| op4 = list(map(lambda x: x.upper(), op3)) | |
| for i in op4: | |
| if i in lst: | |
| dl.append(i) | |
| for i in dl: | |
| st.warning("This query will " + i + " the data ",icon="⚠️") | |
| stability_api = client.StabilityInference( | |
| key=st.secrets["STABILITY_KEY"], #os.environ("STABILITY_KEY"), # key=os.environ['STABILITY_KEY'], # API Key reference. | |
| verbose=True, # Print debug messages. | |
| engine="stable-diffusion-v1-5", # Set the engine to use for generation. | |
| # Available engines: stable-diffusion-v1 stable-diffusion-v1-5 stable-diffusion-512-v2-0 stable-diffusion-768-v2-0 | |
| # stable-diffusion-512-v2-1 stable-diffusion-768-v2-1 stable-inpainting-v1-0 stable-inpainting-512-v2-0 | |
| ) | |
| def search_internet(question): | |
| try: | |
| params = { | |
| "q": question, | |
| "location": "Bengaluru, Karnataka, India", | |
| "hl": "hi", | |
| "gl": "in", | |
| "google_domain": "google.co.in", | |
| # "api_key": "" | |
| "api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
| } | |
| params = { | |
| "q": question, | |
| "location": "Bengaluru, Karnataka, India", | |
| "hl": "hi", | |
| "gl": "in", | |
| "google_domain": "google.co.in", | |
| # "api_key": "" | |
| "api_key": st.secrets["GOOGLE_API"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
| } | |
| search = GoogleSearch(params) | |
| results = search.get_dict() | |
| organic_results = results["organic_results"] | |
| snippets = "" | |
| counter = 1 | |
| for item in organic_results: | |
| snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n' | |
| counter += 1 | |
| # snippets | |
| response = openai.Completion.create( | |
| model="gpt-3.5-turbo", | |
| prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''', | |
| temperature=0.49, | |
| max_tokens=256, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0) | |
| string_temp = response.choices[0].text | |
| st.write(string_temp) | |
| st.write(snippets) | |
| except: | |
| try: | |
| params = { | |
| "q": question, | |
| "location": "Bengaluru, Karnataka, India", | |
| "hl": "hi", | |
| "gl": "in", | |
| "google_domain": "google.co.in", | |
| # "api_key": "" | |
| "api_key": st.secrets["GOOGLE_API1"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
| } | |
| params = { | |
| "q": question, | |
| "location": "Bengaluru, Karnataka, India", | |
| "hl": "hi", | |
| "gl": "in", | |
| "google_domain": "google.co.in", | |
| # "api_key": "" | |
| "api_key": st.secrets["GOOGLE_API1"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
| } | |
| search = GoogleSearch(params) | |
| results = search.get_dict() | |
| organic_results = results["organic_results"] | |
| snippets = "" | |
| counter = 1 | |
| for item in organic_results: | |
| snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n' | |
| counter += 1 | |
| # snippets | |
| response = openai.Completion.create( | |
| model="gpt-3.5-turbo", | |
| prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''', | |
| temperature=0.49, | |
| max_tokens=256, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0) | |
| string_temp = response.choices[0].text | |
| st.write(string_temp) | |
| st.write(snippets) | |
| except: | |
| params = { | |
| "q": question, | |
| "location": "Bengaluru, Karnataka, India", | |
| "hl": "hi", | |
| "gl": "in", | |
| "google_domain": "google.co.in", | |
| # "api_key": "" | |
| "api_key": st.secrets["GOOGLE_API2"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
| } | |
| params = { | |
| "q": question, | |
| "location": "Bengaluru, Karnataka, India", | |
| "hl": "hi", | |
| "gl": "in", | |
| "google_domain": "google.co.in", | |
| # "api_key": "" | |
| "api_key": st.secrets["GOOGLE_API2"] #os.environ("GOOGLE_API") #os.environ['GOOGLE_API'] | |
| } | |
| search = GoogleSearch(params) | |
| results = search.get_dict() | |
| organic_results = results["organic_results"] | |
| snippets = "" | |
| counter = 1 | |
| for item in organic_results: | |
| snippets += str(counter) + ". " + item.get("snippet", "") + '\n' + item['about_this_result']['source']['source_info_link'] + '\n' | |
| counter += 1 | |
| # snippets | |
| response = openai.Completion.create( | |
| model="gpt-3.5-turbo", | |
| prompt=f'''following are snippets from google search with these as knowledge base only answer questions and print reference link as well followed by answer. \n\n {snippets}\n\n question-{question}\n\nAnswer-''', | |
| temperature=0.49, | |
| max_tokens=256, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0) | |
| string_temp = response.choices[0].text | |
| st.write(string_temp) | |
| st.write(snippets) | |
| # openai.api_key = "" | |
| openai.api_key = st.secrets["OPENAI_KEY"] #os.environ("OPENAI_KEY") #os.environ['OPENAI_KEY'] | |
| date_time = str(datetime.now()) | |
| # dictionary = st.secrets("GSHEET_KEY") | |
| # json_object = json.dumps(dictionary, indent=4) | |
| def g_sheet_log(myinput, output): | |
| SERVICE_ACCOUNT_FILE = 'gsheet.json' | |
| credentials = service_account.Credentials.from_service_account_file( | |
| filename=SERVICE_ACCOUNT_FILE | |
| ) | |
| service_sheets = build('sheets', 'v4', credentials=credentials) | |
| GOOGLE_SHEETS_ID = '16cM8lHm7n_X0ZVLgWfL5fcBhvKWIGO9LQz3zCl2Dn_8' | |
| worksheet_name = 'Prompt_Logs!' | |
| cell_range_insert = 'A:C' | |
| values = ( | |
| (myinput, output, date_time), | |
| ) | |
| value_range_body = { | |
| 'majorDimension' : 'ROWS', | |
| 'values' : values | |
| } | |
| service_sheets.spreadsheets().values().append( | |
| spreadsheetId=GOOGLE_SHEETS_ID, | |
| valueInputOption='USER_ENTERED', | |
| range=worksheet_name + cell_range_insert, | |
| body=value_range_body | |
| ).execute() | |
| openai.api_key = st.secrets["OPENAI_KEY"] | |
| duration = 5 | |
| fs = 44100 | |
| channels = 1 | |
| filename = "output.wav" | |
| def record_audio(): | |
| myrecording = sd.rec(int(duration * fs), samplerate=fs, channels=channels) | |
| sd.wait() | |
| sf.write(filename, myrecording, fs) | |
| return filename | |
| # p = pyaudio.PyAudio() | |
| # # Open the microphone stream | |
| # stream = p.open(format=FORMAT, | |
| # channels=CHANNELS, | |
| # rate=RATE, | |
| # input=True, | |
| # frames_per_buffer=CHUNK) | |
| # # Record the audio | |
| # frames = [] | |
| # for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): | |
| # data = stream.read(CHUNK) | |
| # frames.append(data) | |
| # # Close the microphone stream | |
| # stream.stop_stream() | |
| # stream.close() | |
| # p.terminate() | |
| # # Save the recorded audio to a WAV file | |
| # wf = wave.open("output.mp3", "wb") | |
| # wf.setnchannels(CHANNELS) | |
| # wf.setsampwidth(p.get_sample_size(FORMAT)) | |
| # wf.setframerate(RATE) | |
| # wf.writeframes(b"".join(frames)) | |
| # wf.close() | |
| # # Return the path to the recorded audio file | |
| # return "output.mp3" | |
| def openai_response(PROMPT): | |
| response = openai.Image.create( | |
| prompt=PROMPT, | |
| n=1, | |
| size="256x256", | |
| ) | |
| return response["data"][0]["url"] | |
| #page_bg_img = """ | |
| #<style> | |
| #[data-testid="stAppViewContainer"] { | |
| #background-color: #ffffff; | |
| #opacity: 0.8; | |
| #background-image: repeating-radial-gradient( circle at 0 0, transparent 0, #ffffff 40px ), repeating-linear-gradient( #55a6f655, #55a6f6 ); | |
| #} | |
| #</style> | |
| #""" | |
| #st.markdown(page_bg_img, unsafe_allow_html=True) | |
| st.title("Hi! :red[HyperBot] here!!🤖⭐️") | |
| st.title("Go on ask me anything!!") | |
| st.text(''' | |
| ⭐️ HyperBot is your virtual assistant powered by Whisper / chatgpt / internet / Dall-E / OpenAI embeddings - | |
| the perfect companion for you. With HyperBot, you can ask anything you ask internet everyday . Get answers | |
| to questions about the weather , stocks 📈, news📰, and more! Plus, you can also generate 🖌️ paintings, | |
| drawings, abstract art 🎨, play music 🎵 or videos, create tweets 🐦 and posts 📝, and compose emails 📧 - | |
| all with the help of HyperBot! 🤖 ✨ | |
| ''') | |
| option_ = ['Random Questions','Questions based on custom CSV data'] | |
| Usage = st.selectbox('Select an option:', option_) | |
| if Usage == 'Questions based on custom CSV data': | |
| st.text(''' | |
| You can use your own custom csv files to test this feature or | |
| you can use the sample csv file which contains data about cars. | |
| Example question: | |
| - How many cars were manufactured each year between 2000 to 2008? | |
| ''') | |
| option = ['Sample_Cars_csv','Upload_csv'] | |
| res = st.selectbox('Select from below options:',option) | |
| if res == 'Upload_csv': | |
| uploaded_file = st.file_uploader("Add dataset (csv) ",type=['csv']) | |
| if uploaded_file is not None: | |
| st.write("File Uploaded") | |
| file_name=uploaded_file.name | |
| ext=file_name.split(".")[0] | |
| st.write(ext) | |
| df=pd.read_csv(uploaded_file) | |
| save_uploadedfile(uploaded_file) | |
| col= df.columns | |
| try: | |
| columns = str((df.columns).tolist()) | |
| column = clean(columns) | |
| st.write('Columns:' ) | |
| st.text(col) | |
| except: | |
| pass | |
| temp = st.slider('Temperature: ', 0.0, 1.0, 0.0) | |
| with st.form(key='columns_in_form2'): | |
| col3, col4 = st.columns(2) | |
| with col3: | |
| userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query') | |
| submitButton = st.form_submit_button(label = 'Submit') | |
| if submitButton: | |
| try: | |
| col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:" | |
| result = gpt3(col_p) | |
| except: | |
| results = gpt3(userPrompt) | |
| st.success('loaded') | |
| with col4: | |
| try: | |
| sqlOutput = st.text_area('SQL Query', value=gpt3(col_p)) | |
| warning(sqlOutput) | |
| cars=pd.read_csv('cars.csv') | |
| result_tab2=ps.sqldf(sqlOutput) | |
| st.write(result_tab2) | |
| with open("fewshot_matplot.txt", "r") as file: | |
| text_plot = file.read() | |
| result_tab = result_tab2.reset_index(drop=True) | |
| result_tab_string = result_tab.to_string() | |
| gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: " | |
| if len(gr_prompt) > 4097: | |
| st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^') | |
| st.write('As of today, the NLP model text-davinci-003/gpt-3.5-turbo that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^') | |
| elif len(result_tab2.columns) < 2: | |
| st.write("I need more data to conduct analysis and provide visualizations for you... ^_^") | |
| else: | |
| st.success("Plotting...") | |
| response_graph = openai.Completion.create( | |
| engine="gpt-3.5-turbo", | |
| prompt = gr_prompt, | |
| max_tokens=1024, | |
| n=1, | |
| stop=None, | |
| temperature=0.5, | |
| ) | |
| if response_graph['choices'][0]['text'] != "": | |
| print(response_graph['choices'][0]['text']) | |
| exec(response_graph['choices'][0]['text']) | |
| else: | |
| print('Retry! Graph could not be plotted *_*') | |
| except: | |
| pass | |
| elif res == "Sample_Cars_csv": | |
| df = pd.read_csv('cars.csv') | |
| col= df.columns | |
| try: | |
| columns = str((df.columns).tolist()) | |
| column = clean(columns) | |
| st.write('Columns:' ) | |
| st.text(col) | |
| except: | |
| pass | |
| temp = st.slider('Temperature: ', 0.0, 1.0, 0.0) | |
| with st.form(key='columns_in_form2'): | |
| col3, col4 = st.columns(2) | |
| with col3: | |
| userPrompt = st.text_area("Input Prompt",'Enter Natural Language Query') | |
| submitButton = st.form_submit_button(label = 'Submit') | |
| if submitButton: | |
| try: | |
| col_p ="Create SQL statement from instruction. "+ext+" " " (" + column +")." +" Request:" + userPrompt + "SQL statement:" | |
| result = gpt3(col_p) | |
| except: | |
| results = gpt3(userPrompt) | |
| st.success('loaded') | |
| with col4: | |
| try: | |
| sqlOutput = st.text_area('SQL Query', value=gpt3(col_p)) | |
| warning(sqlOutput) | |
| cars=pd.read_csv('cars.csv') | |
| result_tab2=ps.sqldf(sqlOutput) | |
| st.write(result_tab2) | |
| with open("fewshot_matplot.txt", "r") as file: | |
| text_plot = file.read() | |
| result_tab = result_tab2.reset_index(drop=True) | |
| result_tab_string = result_tab.to_string() | |
| gr_prompt = text_plot + userPrompt + result_tab_string + "Plot graph for: " | |
| if len(gr_prompt) > 4097: | |
| st.write('OVERWHELMING DATA!!! You have given me more than 4097 tokens! ^_^') | |
| st.write('As of today, the NLP model text-davinci-003 that I run on takes in inputs that have less than 4097 tokens. Kindly retry ^_^') | |
| elif len(result_tab2.columns) < 2: | |
| st.write("I need more data to conduct analysis and provide visualizations for you... ^_^") | |
| else: | |
| st.success("Plotting...") | |
| response_graph = openai.Completion.create( | |
| engine="gpt-3.5-turbo", | |
| prompt = gr_prompt, | |
| max_tokens=1024, | |
| n=1, | |
| stop=None, | |
| temperature=0.5, | |
| ) | |
| if response_graph['choices'][0]['text'] != "": | |
| print(response_graph['choices'][0]['text']) | |
| exec(response_graph['choices'][0]['text']) | |
| else: | |
| print('Retry! Graph could not be plotted *_*') | |
| except: | |
| pass | |
| elif Usage == 'Random Questions': | |
| st.text('''You can ask me: | |
| 1. All the things you ask ChatGPT. | |
| 2. Generating paintings, drawings, abstract art. | |
| 3. Music or Videos | |
| 4. Weather | |
| 5. Stocks | |
| 6. Current Affairs and News. | |
| 7. Create or compose tweets or Linkedin posts or email.''') | |
| Input_type = st.radio( | |
| "**Input type:**", | |
| ('TEXT', 'SPEECH') | |
| ) | |
| if Input_type == 'TEXT': | |
| st.write('**You are now in Text input mode**') | |
| mytext = st.text_input('**Go on! Ask me anything:**') | |
| if st.button("SUBMIT"): | |
| question=mytext | |
| response = openai.Completion.create( | |
| model="gpt-3.5-turbo", | |
| prompt=f'''Your name is HyperBot and knowledge cutoff date is 2021-09, and you are not aware of any events after that time. if the | |
| Answer to following questions is not from your knowledge base or in case of queries like weather | |
| updates / stock updates / current news or people which requires you to have internet connection then print i don't have access to internet to answer your question, | |
| if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated") | |
| if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query") | |
| if the question is related to operating home appliances then print ipython type output function home_app(" action(ON/Off),appliance(TV,Geaser,Fridge,Lights,fans,AC)") . | |
| if question is realted to sending mail or sms then print ipython type output function messenger_app(" message of us ,messenger(email,sms)") | |
| \nQuestion-{question} | |
| \nAnswer -''', | |
| temperature=0.49, | |
| max_tokens=256, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0 | |
| ) | |
| string_temp=response.choices[0].text | |
| if ("gen_draw" in string_temp): | |
| try: | |
| try: | |
| wget.download(openai_response(prompt)) | |
| img2 = Image.open(wget.download(openai_response(prompt))) | |
| img2.show() | |
| rx = 'Image returned' | |
| g_sheet_log(mytext, rx) | |
| except: | |
| urllib.request.urlretrieve(openai_response(prompt),"img_ret.png") | |
| img = Image.open("img_ret.png") | |
| img.show() | |
| rx = 'Image returned' | |
| g_sheet_log(mytext, rx) | |
| except: | |
| # Set up our initial generation parameters. | |
| answers = stability_api.generate( | |
| prompt = mytext, | |
| seed=992446758, # If a seed is provided, the resulting generated image will be deterministic. | |
| # What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again. | |
| # Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook. | |
| steps=30, # Amount of inference steps performed on image generation. Defaults to 30. | |
| cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt. | |
| # Setting this value higher increases the strength in which it tries to match your prompt. | |
| # Defaults to 7.0 if not specified. | |
| width=512, # Generation width, defaults to 512 if not included. | |
| height=512, # Generation height, defaults to 512 if not included. | |
| samples=1, # Number of images to generate, defaults to 1 if not included. | |
| sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with. | |
| # Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers. | |
| # (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m) | |
| ) | |
| # Set up our warning to print to the console if the adult content classifier is tripped. | |
| # If adult content classifier is not tripped, save generated images. | |
| for resp in answers: | |
| for artifact in resp.artifacts: | |
| if artifact.finish_reason == generation.FILTER: | |
| warnings.warn( | |
| "Your request activated the API's safety filters and could not be processed." | |
| "Please modify the prompt and try again.") | |
| if artifact.type == generation.ARTIFACT_IMAGE: | |
| img = Image.open(io.BytesIO(artifact.binary)) | |
| st.image(img) | |
| img.save(str(artifact.seed)+ ".png") # Save our generated images with their seed number as the filename. | |
| rx = 'Image returned' | |
| g_sheet_log(mytext, rx) | |
| # except: | |
| # st.write('image is being generated please wait...') | |
| # def extract_image_description(input_string): | |
| # return input_string.split('gen_draw("')[1].split('")')[0] | |
| # prompt=extract_image_description(string_temp) | |
| # # model_id = "CompVis/stable-diffusion-v1-4" | |
| # model_id='runwayml/stable-diffusion-v1-5' | |
| # device = "cuda" | |
| # pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| # pipe = pipe.to(device) | |
| # # prompt = "a photo of an astronaut riding a horse on mars" | |
| # image = pipe(prompt).images[0] | |
| # image.save("astronaut_rides_horse.png") | |
| # st.image(image) | |
| # # image | |
| elif ("vid_tube" in string_temp): | |
| s = Search(mytext) | |
| search_res = s.results | |
| first_vid = search_res[0] | |
| print(first_vid) | |
| string = str(first_vid) | |
| video_id = string[string.index('=') + 1:-1] | |
| # print(video_id) | |
| YoutubeURL = "https://www.youtube.com/watch?v=" | |
| OurURL = YoutubeURL + video_id | |
| st.write(OurURL) | |
| st_player(OurURL) | |
| ry = 'Youtube link and video returned' | |
| g_sheet_log(mytext, ry) | |
| elif ("don't" in string_temp or "internet" in string_temp): | |
| st.write('searching internet ') | |
| search_internet(question) | |
| rz = 'Internet result returned' | |
| g_sheet_log(mytext, string_temp) | |
| else: | |
| st.write(string_temp) | |
| g_sheet_log(mytext, string_temp) | |
| elif Input_type == 'SPEECH': | |
| stt_button = Button(label="Speak", width=100) | |
| stt_button.js_on_event("button_click", CustomJS(code=""" | |
| var recognition = new webkitSpeechRecognition(); | |
| recognition.continuous = true; | |
| recognition.interimResults = true; | |
| recognition.onresult = function (e) { | |
| var value = ""; | |
| for (var i = e.resultIndex; i < e.results.length; ++i) { | |
| if (e.results[i].isFinal) { | |
| value += e.results[i][0].transcript; | |
| } | |
| } | |
| if ( value != "") { | |
| document.dispatchEvent(new CustomEvent("GET_TEXT", {detail: value})); | |
| } | |
| } | |
| recognition.start(); | |
| """)) | |
| result = streamlit_bokeh_events( | |
| stt_button, | |
| events="GET_TEXT", | |
| key="listen", | |
| refresh_on_update=False, | |
| override_height=75, | |
| debounce_time=0) | |
| if result: | |
| if "GET_TEXT" in result: | |
| question = result.get("GET_TEXT") | |
| response = openai.Completion.create( | |
| model="gpt-3.5-turbo", | |
| prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the | |
| Answer to following questions is not from your knowledge base or in case of queries like weather | |
| updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question, | |
| if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated") | |
| if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query") | |
| \nQuestion-{question} | |
| \nAnswer -''', | |
| temperature=0.49, | |
| max_tokens=256, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0 | |
| ) | |
| string_temp=response.choices[0].text | |
| if ("gen_draw" in string_temp): | |
| st.write('*image is being generated please wait..* ') | |
| def extract_image_description(input_string): | |
| return input_string.split('gen_draw("')[1].split('")')[0] | |
| prompt=extract_image_description(string_temp) | |
| # model_id = "CompVis/stable-diffusion-v1-4" | |
| model_id='runwayml/stable-diffusion-v1-5' | |
| device = "cuda" | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| pipe = pipe.to(device) | |
| # prompt = "a photo of an astronaut riding a horse on mars" | |
| image = pipe(prompt).images[0] | |
| image.save("astronaut_rides_horse.png") | |
| st.image(image) | |
| # image | |
| elif ("vid_tube" in string_temp): | |
| s = Search(question) | |
| search_res = s.results | |
| first_vid = search_res[0] | |
| print(first_vid) | |
| string = str(first_vid) | |
| video_id = string[string.index('=') + 1:-1] | |
| # print(video_id) | |
| YoutubeURL = "https://www.youtube.com/watch?v=" | |
| OurURL = YoutubeURL + video_id | |
| st.write(OurURL) | |
| st_player(OurURL) | |
| elif ("don't" in string_temp or "internet" in string_temp ): | |
| st.write('*searching internet*') | |
| search_internet(question) | |
| else: | |
| st.write(string_temp) | |
| # except: | |
| # pass | |
| # st.text("Record your audio, **max length - 5 seconds**") | |
| # if st.button("Record"): | |
| # st.write("Recording...") | |
| # audio_file = record_audio() | |
| # st.write("Recording complete.") | |
| # file = open(audio_file, "rb") | |
| # # Play the recorded audio | |
| # st.audio(audio_file) | |
| # transcription = openai.Audio.transcribe("whisper-1", file) | |
| # result = transcription["text"] | |
| # st.write(f"Fetched from audio - {result}") | |
| # question = result | |
| # response = openai.Completion.create( | |
| # model="gpt-3.5-turbo", | |
| # prompt=f'''Your knowledge cutoff is 2021-09, and it is not aware of any events after that time. if the | |
| # Answer to following questions is not from your knowledge base or in case of queries like weather | |
| # updates / stock updates / current news Etc which requires you to have internet connection then print i don't have access to internet to answer your question, | |
| # if question is related to image or painting or drawing generation then print ipython type output function gen_draw("detailed prompt of image to be generated") | |
| # if the question is related to playing a song or video or music of a singer then print ipython type output function vid_tube("relevent search query") | |
| # \nQuestion-{question} | |
| # \nAnswer -''', | |
| # temperature=0.49, | |
| # max_tokens=256, | |
| # top_p=1, | |
| # frequency_penalty=0, | |
| # presence_penalty=0 | |
| # ) | |
| # string_temp=response.choices[0].text | |
| # if ("gen_draw" in string_temp): | |
| # st.write('*image is being generated please wait..* ') | |
| # def extract_image_description(input_string): | |
| # return input_string.split('gen_draw("')[1].split('")')[0] | |
| # prompt=extract_image_description(string_temp) | |
| # # model_id = "CompVis/stable-diffusion-v1-4" | |
| # model_id='runwayml/stable-diffusion-v1-5' | |
| # device = "cuda" | |
| # pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
| # pipe = pipe.to(device) | |
| # # prompt = "a photo of an astronaut riding a horse on mars" | |
| # image = pipe(prompt).images[0] | |
| # image.save("astronaut_rides_horse.png") | |
| # st.image(image) | |
| # # image | |
| # elif ("vid_tube" in string_temp): | |
| # s = Search(question) | |
| # search_res = s.results | |
| # first_vid = search_res[0] | |
| # print(first_vid) | |
| # string = str(first_vid) | |
| # video_id = string[string.index('=') + 1:-1] | |
| # # print(video_id) | |
| # YoutubeURL = "https://www.youtube.com/watch?v=" | |
| # OurURL = YoutubeURL + video_id | |
| # st.write(OurURL) | |
| # st_player(OurURL) | |
| # elif ("don't" in string_temp or "internet" in string_temp ): | |
| # st.write('*searching internet*') | |
| # search_internet(question) | |
| # else: | |
| # st.write(string_temp) | |
| else: | |
| pass | |