NLLB-NorthFrisian / inference.py
Thore Andresen
Create demo
a0f3ffa
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
def create_tokenizer_with_new_lang(model_id, new_lang):
"""
Add a new language token to the tokenizer vocabulary
(this should be done each time after its initialization)
"""
tokenizer = NllbTokenizer.from_pretrained(model_id)
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
return tokenizer
class Translator:
@classmethod
def from_pretrained(cls, path, new_lang='moo_Latn'):
# Does the model need adaptation or not?
# model, tokenizer = create_model_with_new_lang(
# model_id=path,
# new_lang=new_lang,
# similar_lang='deu_Latn'
# )
tokenizer = create_tokenizer_with_new_lang(path, new_lang)
model = AutoModelForSeq2SeqLM.from_pretrained(path)
return Translator(model, tokenizer)
def __init__(self, model, tokenizer) -> None:
self.model = model
self.tokenizer = tokenizer
# self.model.cuda()
def translate(self, text, src_lang='moo_Latn', tgt_lang='deu_Latn', a=32, b=3, max_input_length=1024, num_beams=4, **kwargs):
self.tokenizer.src_lang = src_lang
self.tokenizer.tgt_lang = tgt_lang
inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
result = self.model.generate(
**inputs.to(self.model.device),
forced_bos_token_id=self.tokenizer.convert_tokens_to_ids(tgt_lang),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
num_beams=num_beams,
**kwargs
)
return self.tokenizer.batch_decode(result, skip_special_tokens=True)