Spaces:
Paused
Paused
| # | |
| # The Python Imaging Library. | |
| # $Id$ | |
| # | |
| # global image statistics | |
| # | |
| # History: | |
| # 1996-04-05 fl Created | |
| # 1997-05-21 fl Added mask; added rms, var, stddev attributes | |
| # 1997-08-05 fl Added median | |
| # 1998-07-05 hk Fixed integer overflow error | |
| # | |
| # Notes: | |
| # This class shows how to implement delayed evaluation of attributes. | |
| # To get a certain value, simply access the corresponding attribute. | |
| # The __getattr__ dispatcher takes care of the rest. | |
| # | |
| # Copyright (c) Secret Labs AB 1997. | |
| # Copyright (c) Fredrik Lundh 1996-97. | |
| # | |
| # See the README file for information on usage and redistribution. | |
| # | |
| from __future__ import annotations | |
| import math | |
| from functools import cached_property | |
| from . import Image | |
| class Stat: | |
| def __init__( | |
| self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None | |
| ) -> None: | |
| """ | |
| Calculate statistics for the given image. If a mask is included, | |
| only the regions covered by that mask are included in the | |
| statistics. You can also pass in a previously calculated histogram. | |
| :param image: A PIL image, or a precalculated histogram. | |
| .. note:: | |
| For a PIL image, calculations rely on the | |
| :py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are | |
| grouped into 256 bins, even if the image has more than 8 bits per | |
| channel. So ``I`` and ``F`` mode images have a maximum ``mean``, | |
| ``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum | |
| of more than 255. | |
| :param mask: An optional mask. | |
| """ | |
| if isinstance(image_or_list, Image.Image): | |
| self.h = image_or_list.histogram(mask) | |
| elif isinstance(image_or_list, list): | |
| self.h = image_or_list | |
| else: | |
| msg = "first argument must be image or list" # type: ignore[unreachable] | |
| raise TypeError(msg) | |
| self.bands = list(range(len(self.h) // 256)) | |
| def extrema(self) -> list[tuple[int, int]]: | |
| """ | |
| Min/max values for each band in the image. | |
| .. note:: | |
| This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and | |
| simply returns the low and high bins used. This is correct for | |
| images with 8 bits per channel, but fails for other modes such as | |
| ``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to | |
| return per-band extrema for the image. This is more correct and | |
| efficient because, for non-8-bit modes, the histogram method uses | |
| :py:meth:`~PIL.Image.Image.getextrema` to determine the bins used. | |
| """ | |
| def minmax(histogram: list[int]) -> tuple[int, int]: | |
| res_min, res_max = 255, 0 | |
| for i in range(256): | |
| if histogram[i]: | |
| res_min = i | |
| break | |
| for i in range(255, -1, -1): | |
| if histogram[i]: | |
| res_max = i | |
| break | |
| return res_min, res_max | |
| return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)] | |
| def count(self) -> list[int]: | |
| """Total number of pixels for each band in the image.""" | |
| return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)] | |
| def sum(self) -> list[float]: | |
| """Sum of all pixels for each band in the image.""" | |
| v = [] | |
| for i in range(0, len(self.h), 256): | |
| layer_sum = 0.0 | |
| for j in range(256): | |
| layer_sum += j * self.h[i + j] | |
| v.append(layer_sum) | |
| return v | |
| def sum2(self) -> list[float]: | |
| """Squared sum of all pixels for each band in the image.""" | |
| v = [] | |
| for i in range(0, len(self.h), 256): | |
| sum2 = 0.0 | |
| for j in range(256): | |
| sum2 += (j**2) * float(self.h[i + j]) | |
| v.append(sum2) | |
| return v | |
| def mean(self) -> list[float]: | |
| """Average (arithmetic mean) pixel level for each band in the image.""" | |
| return [self.sum[i] / self.count[i] for i in self.bands] | |
| def median(self) -> list[int]: | |
| """Median pixel level for each band in the image.""" | |
| v = [] | |
| for i in self.bands: | |
| s = 0 | |
| half = self.count[i] // 2 | |
| b = i * 256 | |
| for j in range(256): | |
| s = s + self.h[b + j] | |
| if s > half: | |
| break | |
| v.append(j) | |
| return v | |
| def rms(self) -> list[float]: | |
| """RMS (root-mean-square) for each band in the image.""" | |
| return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands] | |
| def var(self) -> list[float]: | |
| """Variance for each band in the image.""" | |
| return [ | |
| (self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i] | |
| for i in self.bands | |
| ] | |
| def stddev(self) -> list[float]: | |
| """Standard deviation for each band in the image.""" | |
| return [math.sqrt(self.var[i]) for i in self.bands] | |
| Global = Stat # compatibility | |