File size: 6,298 Bytes
402e33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# from utils.vector_store import get_vector_store
# def test_retriever(query: str, k: int = 3, vector_store_path="./chroma_db"):
# """Test retriever with specific vector store"""
# vector_store = get_vector_store(persist_directory=vector_store_path)
# retriever = vector_store.as_retriever(search_kwargs={"k": k})
# docs = retriever.get_relevant_documents(query)
# # Deduplicate based on page_content
# seen = set()
# unique_docs = []
# for doc in docs:
# if doc.page_content not in seen:
# seen.add(doc.page_content)
# unique_docs.append(doc)
# print(f"\nUsing vector store: {vector_store_path}")
# print(f"Top {len(unique_docs)} unique chunks retrieved for: '{query}'\n")
# for i, doc in enumerate(unique_docs, 1):
# source = doc.metadata.get("source", "unknown")
# page = doc.metadata.get("page", "N/A")
# print(f"--- Chunk #{i} ---")
# print(f"Source: {source} | Page: {page}")
# preview = doc.page_content[:300]
# if len(doc.page_content) > 300:
# preview += "..."
# print(preview)
# print()
# def compare_retrievers(query: str, k: int = 3):
# """Compare results from different vector stores"""
# stores = {
# "MES Manual": "./vector_stores/mes_db",
# "Technical Docs": "./vector_stores/tech_db",
# "General Docs": "./vector_stores/general_db"
# }
# print(f"\n=== Comparing retrievers for: '{query}' ===\n")
# for store_name, store_path in stores.items():
# try:
# print(f"π {store_name}:")
# print("-" * 50)
# test_retriever(query, k=k, vector_store_path=store_path)
# print("\n" + "="*60 + "\n")
# except Exception as e:
# print(f"β Could not access {store_name}: {e}\n")
# if __name__ == "__main__":
# print("Multi-Vector Store RAG Tester")
# print("\nAvailable commands:")
# print(" - Enter a question to test default store")
# print(" - Type 'mes: <question>' for MES manual")
# print(" - Type 'tech: <question>' for technical docs")
# print(" - Type 'general: <question>' for general docs")
# print(" - Type 'compare: <question>' to compare all stores")
# print(" - Type 'exit' to quit")
# while True:
# user_input = input("\nEnter your question: ").strip()
# if user_input.lower() == "exit":
# break
# elif user_input.lower().startswith("mes: "):
# query = user_input[5:]
# test_retriever(query, vector_store_path="./vector_stores/mes_db")
# elif user_input.lower().startswith("tech: "):
# query = user_input[6:]
# test_retriever(query, vector_store_path="./vector_stores/tech_db")
# elif user_input.lower().startswith("general: "):
# query = user_input[9:]
# test_retriever(query, vector_store_path="./vector_stores/general_db")
# elif user_input.lower().startswith("compare: "):
# query = user_input[9:]
# compare_retrievers(query)
# else:
# test_retriever(user_input) # Default store
from utils.vector_store import get_vector_store
def test_retriever(query: str, k: int = 3, vector_store_path="./chroma_db"):
"""Test retriever with specific vector store"""
vector_store = get_vector_store(persist_directory=vector_store_path)
retriever = vector_store.as_retriever(search_kwargs={"k": k})
docs = retriever.get_relevant_documents(query)
# Deduplicate based on page_content
seen = set()
unique_docs = []
for doc in docs:
if doc.page_content not in seen:
seen.add(doc.page_content)
unique_docs.append(doc)
print(f"\nUsing vector store: {vector_store_path}")
print(f"Top {len(unique_docs)} unique chunks retrieved for: '{query}'\n")
for i, doc in enumerate(unique_docs, 1):
source = doc.metadata.get("source", "unknown")
page = doc.metadata.get("page", "N/A")
print(f"--- Chunk #{i} ---")
print(f"Source: {source} | Page: {page}")
preview = doc.page_content[:300]
if len(doc.page_content) > 300:
preview += "..."
print(preview)
print()
def compare_retrievers(query: str, k: int = 3):
"""Compare results from different vector stores"""
stores = {
"MES Manual": "./vector_stores/mes_db",
"Technical Docs": "./vector_stores/tech_db",
"General Docs": "./vector_stores/general_db"
}
print(f"\n=== Comparing retrievers for: '{query}' ===\n")
for store_name, store_path in stores.items():
try:
print(f"π {store_name}:")
print("-" * 50)
test_retriever(query, k=k, vector_store_path=store_path)
print("\n" + "="*60 + "\n")
except Exception as e:
print(f"β Could not access {store_name}: {e}\n")
if __name__ == "__main__":
print("Multi-Vector Store RAG Tester")
print("\nAvailable commands:")
print(" - Enter a question to test default store")
print(" - Type 'mes: <question>' for MES manual")
print(" - Type 'tech: <question>' for technical docs")
print(" - Type 'general: <question>' for general docs")
print(" - Type 'compare: <question>' to compare all stores")
print(" - Type 'exit' to quit")
while True:
user_input = input("\nEnter your question: ").strip()
if user_input.lower() == "exit":
break
elif user_input.lower().startswith("mes: "):
query = user_input[5:]
test_retriever(query, vector_store_path="./vector_stores/mes_db")
elif user_input.lower().startswith("tech: "):
query = user_input[6:]
test_retriever(query, vector_store_path="./vector_stores/tech_db")
elif user_input.lower().startswith("general: "):
query = user_input[9:]
test_retriever(
query, vector_store_path="./vector_stores/general_db")
elif user_input.lower().startswith("compare: "):
query = user_input[9:]
compare_retrievers(query)
else:
test_retriever(user_input) # Default store
|