### # Elo based comparison of models # https://chat.lmsys.org/?leaderboard ### ## # visual libraries gradio , could be streamlit as well or cl ## import gradio as gr ## # Libraries # Langchain - https://python.langchain.com/docs/get_started/introduction.html # Used for simplifiing calls, task ## import langchain import transformers # https://huggingface.co/spaces/joyson072/LLm-Langchain/blob/main/app.py from langchain.llms import HuggingFaceHub # for the chain and prompt from langchain.prompts import PromptTemplate from langchain.chains import LLMChain, SimpleSequentialChain ################### llm = HuggingFaceHub( repo_id="google/flan-ul2", # repo_id="google/flan-t5-small", model_kwargs={"temperature":0.1, "max_new_tokens":250}) # Chain 1: Generating a rephrased version of the user's question template = """{question}\n\n""" prompt_template = PromptTemplate(input_variables=["question"], template=template) question_chain = LLMChain(llm=llm, prompt=prompt_template) # Chain 2: Generating assumptions made in the statement template = """Here is a statement: {statement} Make a bullet point list of the assumptions you made when producing the above statement.\n\n""" prompt_template = PromptTemplate(input_variables=["statement"], template=template) assumptions_chain = LLMChain(llm=llm, prompt=prompt_template) assumptions_chain_seq = SimpleSequentialChain( chains=[question_chain, assumptions_chain], verbose=True ) # Chain 3: Fact checking the assumptions template = """Here is a bullet point list of assertions: {assertions} For each assertion, determine whether it is true or false. If it is false, explain why.\n\n""" prompt_template = PromptTemplate(input_variables=["assertions"], template=template) fact_checker_chain = LLMChain(llm=llm, prompt=prompt_template) fact_checker_chain_seq = SimpleSequentialChain( chains=[question_chain, assumptions_chain, fact_checker_chain], verbose=True ) # Final Chain: Generating the final answer to the user's question based on the facts and assumptions template = """In light of the above facts, how would you answer the question '{}'""".format( "What is the capitol of the usa?" # user_question ) template = """{facts}\n""" + template prompt_template = PromptTemplate(input_variables=["facts"], template=template) answer_chain = LLMChain(llm=llm, prompt=prompt_template) overall_chain = SimpleSequentialChain( chains=[question_chain, assumptions_chain, fact_checker_chain, answer_chain], verbose=True, ) print(overall_chain.run("What is the capitol of the usa?")) ################## #import model class and tokenizer from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration ### # Definition of different purspose prompts # https://huggingface.co/spaces/Chris4K/rlhf-arena/edit/main/app.py #### def prompt_human_instruct(system_msg, history): return system_msg.strip() + "\n" + \ "\n".join(["\n".join(["###Human: "+item[0], "###Assistant: "+item[1]]) for item in history]) def prompt_instruct(system_msg, history): return system_msg.strip() + "\n" + \ "\n".join(["\n".join(["### Instruction: "+item[0], "### Response: "+item[1]]) for item in history]) def prompt_chat(system_msg, history): return system_msg.strip() + "\n" + \ "\n".join(["\n".join(["USER: "+item[0], "ASSISTANT: "+item[1]]) for item in history]) def prompt_roleplay(system_msg, history): return "<|system|>" + system_msg.strip() + "\n" + \ "\n".join(["\n".join(["<|user|>"+item[0], "<|model|>"+item[1]]) for item in history]) #### ## Sentinent models # https://huggingface.co/spaces/CK42/sentiment-model-comparison # 1, 4 seem best for german #### model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment" model_id_2 = "microsoft/deberta-xlarge-mnli" model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english" model_id_4 = "lordtt13/emo-mobilebert" model_id_5 = "juliensimon/reviews-sentiment-analysis" model_id_6 = "sbcBI/sentiment_analysis_model" model_id_7 = "oliverguhr/german-sentiment-bert" # https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld #llm_hf_sentiment = HuggingFaceHub( # repo_id= model_id_7, # model_kwargs={"temperature":0.9 } #) from transformers import pipeline # ## #"['audio-classification', 'automatic-speech-recognition', 'conversational', 'depth-estimation', 'document-question-answering', #'feature-extraction', 'fill-mask', 'image-classification', 'image-segmentation', 'image-to-text', 'mask-generation', 'ner', #'object-detection', 'question-answering', 'sentiment-analysis', 'summarization', 'table-question-answering', 'text-classification', #'text-generation', 'text2text-generation', 'token-classification', 'translation', 'video-classification', 'visual-question-answering', #'vqa', 'zero-shot-audio-classification', 'zero-shot-classification', 'zero-shot-image-classification', 'zero-shot-object-detection', #'translation_XX_to_YY']" ## pipe = pipeline("sentiment-analysis", model=model_id_7) #pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") def predict(text): sentiment_result = pipe(text) print(sentiment_result) return sentiment_result #['huggingface', 'models', 'spaces'] #sentiment = gr.load(model_id_7, src="huggingface") #def sentiment (message): # sentiment_label = sentiment.predict(message) # print ( sentiment_label) # return sentiment_label #sentiment_prompt = PromptTemplate( # input_variables=["text_input"], # template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}" #) #def sentiment ( message): # sentiment_chain = LLMChain(llm=llm_hf_sentiment, prompt=sentiment_prompt) # facts = sentiment_chain.run(message) # print(facts) # return facts #### ## Chat models # https://huggingface.co/spaces/CK42/sentiment-model-comparison # 1 seem best for testing #### chat_model_facebook_blenderbot_400M_distill = "facebook/blenderbot-400M-distill" chat_model_HenryJJ_vincua_13b = "HenryJJ/vincua-13b" text = "Why did the chicken cross the road?" #output_question_1 = llm_hf(text) #print(output_question_1) ### ## FACT EXTRACTION ### # https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld llm_factextract = HuggingFaceHub( # repo_id="google/flan-ul2", repo_id="google/flan-t5-small", model_kwargs={"temperature":0.1, "max_new_tokens":250}) fact_extraction_prompt = PromptTemplate( input_variables=["text_input"], template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}" ) def factextraction (message): fact_extraction_chain = LLMChain(llm=llm_factextract, prompt=fact_extraction_prompt) facts = fact_extraction_chain.run(message) print(facts) return facts #### ## models # 1 seem best for testing #### #download and setup the model and tokenizer model_name = 'facebook/blenderbot-400M-distill' tokenizer = BlenderbotTokenizer.from_pretrained(model_name) model = BlenderbotForConditionalGeneration.from_pretrained(model_name) def func (message, checkbox, numb): inputs = tokenizer(message, return_tensors="pt") result = model.generate(**inputs) return tokenizer.decode(result[0]),"0.9" app = gr.Interface( fn=func, title="Conversation Bota", inputs=["text", "checkbox", gr.Slider(0, 100)], outputs=["text", "number"], ) #app.launch() #################### #app_sentiment = gr.Interface(fn=predict , inputs="textbox", outputs="textbox", title="Conversation Bot") # create a public link, set `share=True` in `launch() #app_sentiment.launch() #################### ### ### ### classifier = pipeline("zero-shot-classification") text = "This is a tutorial about Hugging Face." candidate_labels = ["tech", "education", "business"] def topic_sale_inform (text): res = classifier(text, candidate_labels) print (res) return res app_topic = gr.Interface(fn=topic_sale_inform , inputs="textbox", outputs="textbox", title="Conversation Bots") # create a public link, set `share=True` in `launch() app_topic.launch() #################### app_facts = gr.Interface(fn=factextraction , inputs="textbox", outputs="textbox", title="Conversation Bots") # create a public link, set `share=True` in `launch() #app_facts.launch() ####################