|
|
|
import langchain |
|
import transformers |
|
|
|
from langchain.llms import HuggingFaceHub |
|
|
|
|
|
|
|
from langchain.prompts import PromptTemplate |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.chains import LLMChain |
|
|
|
|
|
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration |
|
|
|
|
|
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment" |
|
model_id_2 = "microsoft/deberta-xlarge-mnli" |
|
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english" |
|
model_id_4 = "lordtt13/emo-mobilebert" |
|
model_id_5 = "juliensimon/reviews-sentiment-analysis" |
|
model_id_6 = "sbcBI/sentiment_analysis_model" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_name = 'facebook/blenderbot-400M-distill' |
|
tokenizer = BlenderbotTokenizer.from_pretrained(model_name) |
|
model = BlenderbotForConditionalGeneration.from_pretrained(model_name) |
|
|
|
chat_model_facebook_blenderbot_400M_distill = "facebook/blenderbot-400M-distill" |
|
chat_model_HenryJJ_vincua_13b = "HenryJJ/vincua-13b" |
|
|
|
|
|
llm_hf = HuggingFaceHub( |
|
repo_id= model, |
|
model_kwargs={"temperature":0.9 } |
|
) |
|
|
|
|
|
|
|
text = "Why did the chicken cross the road?" |
|
|
|
output_question_1 = llm_hf(text) |
|
print(output_question_1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fact_extraction_prompt = PromptTemplate( |
|
input_variables=["text_input"], |
|
template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}" |
|
) |
|
|
|
fact_extraction_chain = LLMChain(llm=llm_hf, prompt=fact_extraction_prompt) |
|
|
|
facts = fact_extraction_chain.run(text + " " +output_question_1) |
|
|
|
print(facts) |
|
|