File size: 1,643 Bytes
0f14421
44c37a8
 
0f14421
 
e14631d
 
 
 
 
 
a6201ac
 
 
 
 
 
 
 
 
 
 
 
 
 
e14631d
44c37a8
0f14421
a6201ac
0f14421
 
 
a6201ac
 
0f14421
 
8b0addf
 
 
 
 
 
 
 
 
 
 
 
 
 
5f4728f
8b0addf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# https://chat.lmsys.org/?leaderboard
import langchain
# https://huggingface.co/spaces/joyson072/LLm-Langchain/blob/main/app.py
from langchain.llms import HuggingFaceHub


# for the chain and prompt
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
from langchain.chains import LLMChain

####
## Sentinent models
# https://huggingface.co/spaces/CK42/sentiment-model-comparison
# 1, 4 seem best for german
####
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
model_id_2 = "microsoft/deberta-xlarge-mnli"
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
model_id_4 = "lordtt13/emo-mobilebert"
model_id_5 = "juliensimon/reviews-sentiment-analysis"
model_id_6 = "sbcBI/sentiment_analysis_model"

chat_model_facebook-blenderbot-400M-distill = "facebook/blenderbot-400M-distill"
chat_model_HenryJJ-vincua-13b = "HenryJJ/vincua-13b"

# https://colab.research.google.com/drive/1hrS6_g14EcOD4ezwSGlGX2zxJegX5uNX#scrollTo=NUwUR9U7qkld
llm_hf = HuggingFaceHub(
    repo_id="chat_model_facebook-blenderbot-400M-distill",
    model_kwargs={"temperature":0.9 }
)



text = "Why did the chicken cross the road?"

output_question_1 = llm_hf(text)
print(output_question_1)



###
## FACT EXTRACTION
###

fact_extraction_prompt = PromptTemplate(
    input_variables=["text_input"],
    template="Extract the key facts out of this text. Don't include opinions. Give each fact a number and keep them short sentences. :\n\n {text_input}"
)

fact_extraction_chain = LLMChain(llm=llm_hf, prompt=fact_extraction_prompt)

facts = fact_extraction_chain.run(text + " " +output_question_1)

print(facts)