Spaces:
Build error
Build error
Create faq_service.py
Browse files- services/faq_service.py +91 -0
services/faq_service.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# services/faq_service.py
|
| 2 |
+
from typing import List, Dict, Any, Optional
|
| 3 |
+
import aiohttp
|
| 4 |
+
from bs4 import BeautifulSoup
|
| 5 |
+
import faiss
|
| 6 |
+
import logging
|
| 7 |
+
from config.config import settings
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
class FAQService:
|
| 12 |
+
def __init__(self, model_service):
|
| 13 |
+
self.embedder = model_service.embedder
|
| 14 |
+
self.faiss_index = None
|
| 15 |
+
self.faq_data = []
|
| 16 |
+
|
| 17 |
+
async def fetch_faq_pages(self) -> List[Dict[str, Any]]:
|
| 18 |
+
async with aiohttp.ClientSession() as session:
|
| 19 |
+
try:
|
| 20 |
+
async with session.get(f"{settings.FAQ_ROOT_URL}sitemap.xml", timeout=settings.TIMEOUT) as response:
|
| 21 |
+
if response.status == 200:
|
| 22 |
+
sitemap = await response.text()
|
| 23 |
+
soup = BeautifulSoup(sitemap, 'xml')
|
| 24 |
+
faq_urls = [loc.text for loc in soup.find_all('loc') if "/faq/" in loc.text]
|
| 25 |
+
|
| 26 |
+
tasks = [self.fetch_faq_content(url, session) for url in faq_urls]
|
| 27 |
+
return await asyncio.gather(*tasks)
|
| 28 |
+
except Exception as e:
|
| 29 |
+
logger.error(f"Error fetching FAQ sitemap: {e}")
|
| 30 |
+
return []
|
| 31 |
+
|
| 32 |
+
async def fetch_faq_content(self, url: str, session: aiohttp.ClientSession) -> Optional[Dict[str, Any]]:
|
| 33 |
+
try:
|
| 34 |
+
async with session.get(url, timeout=settings.TIMEOUT) as response:
|
| 35 |
+
if response.status == 200:
|
| 36 |
+
content = await response.text()
|
| 37 |
+
soup = BeautifulSoup(content, 'html.parser')
|
| 38 |
+
|
| 39 |
+
faq_title = soup.find('h1').text.strip() if soup.find('h1') else "Unknown Title"
|
| 40 |
+
faqs = []
|
| 41 |
+
sections = soup.find_all(['div', 'section'], class_=['faq-item', 'faq-section'])
|
| 42 |
+
|
| 43 |
+
for section in sections:
|
| 44 |
+
question = section.find(['h2', 'h3']).text.strip() if section.find(['h2', 'h3']) else None
|
| 45 |
+
answer = section.find(['p']).text.strip() if section.find(['p']) else None
|
| 46 |
+
|
| 47 |
+
if question and answer:
|
| 48 |
+
faqs.append({"question": question, "answer": answer})
|
| 49 |
+
|
| 50 |
+
return {"url": url, "title": faq_title, "faqs": faqs}
|
| 51 |
+
except Exception as e:
|
| 52 |
+
logger.error(f"Error fetching FAQ content from {url}: {e}")
|
| 53 |
+
return None
|
| 54 |
+
|
| 55 |
+
async def index_faqs(self):
|
| 56 |
+
faq_pages = await self.fetch_faq_pages()
|
| 57 |
+
faq_pages = [page for page in faq_pages if page]
|
| 58 |
+
|
| 59 |
+
self.faq_data = []
|
| 60 |
+
all_texts = []
|
| 61 |
+
|
| 62 |
+
for faq_page in faq_pages:
|
| 63 |
+
for item in faq_page['faqs']:
|
| 64 |
+
combined_text = f"{item['question']} {item['answer']}"
|
| 65 |
+
all_texts.append(combined_text)
|
| 66 |
+
self.faq_data.append({
|
| 67 |
+
"question": item['question'],
|
| 68 |
+
"answer": item['answer'],
|
| 69 |
+
"source": faq_page['url']
|
| 70 |
+
})
|
| 71 |
+
|
| 72 |
+
embeddings = self.embedder.encode(all_texts, convert_to_tensor=True).cpu().detach().numpy()
|
| 73 |
+
dimension = embeddings.shape[1]
|
| 74 |
+
self.faiss_index = faiss.IndexFlatL2(dimension)
|
| 75 |
+
self.faiss_index.add(embeddings)
|
| 76 |
+
|
| 77 |
+
async def search_faqs(self, query: str, top_k: int = 5) -> List[Dict[str, Any]]:
|
| 78 |
+
if not self.faiss_index:
|
| 79 |
+
await self.index_faqs()
|
| 80 |
+
|
| 81 |
+
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
|
| 82 |
+
distances, indices = self.faiss_index.search(query_embedding, top_k)
|
| 83 |
+
|
| 84 |
+
results = []
|
| 85 |
+
for i, idx in enumerate(indices[0]):
|
| 86 |
+
if idx < len(self.faq_data):
|
| 87 |
+
result = self.faq_data[idx].copy()
|
| 88 |
+
result["score"] = float(distances[0][i])
|
| 89 |
+
results.append(result)
|
| 90 |
+
|
| 91 |
+
return results
|