Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -16,24 +16,23 @@ is_colab = utils.is_google_colab() 
     | 
|
| 16 | 
         
             
            colab_instruction = "" if is_colab else """
         
     | 
| 17 | 
         
             
            <p>You can skip the queue using Colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""
         
     | 
| 18 | 
         | 
| 19 | 
         
            -
            if  
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                if is_colab:
         
     | 
| 22 | 
         
            -
                    scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler")
         
     | 
| 23 | 
         
            -
                    pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler)
         
     | 
| 24 | 
         
            -
                else:
         
     | 
| 25 | 
         
            -
                    import streamlit as st
         
     | 
| 26 | 
         
            -
                    scheduler = DDIMScheduler.from_config(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], subfolder="scheduler")
         
     | 
| 27 | 
         
            -
                    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
         
     | 
| 28 | 
         
            -
                    pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], scheduler=scheduler, torch_dtype=torch_dtype)
         
     | 
| 29 | 
         
            -
                tokenizer = pipe.tokenizer
         
     | 
| 30 | 
         
            -
             
     | 
| 31 | 
         
            -
                if torch.cuda.is_available():
         
     | 
| 32 | 
         
            -
                    pipe = pipe.to("cuda")
         
     | 
| 33 | 
         
            -
             
     | 
| 34 | 
         
             
            device_print = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
         
     | 
| 35 | 
         
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 36 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 37 | 
         | 
| 38 | 
         
             
            class LocalBlend:
         
     | 
| 39 | 
         | 
| 
         | 
|
| 16 | 
         
             
            colab_instruction = "" if is_colab else """
         
     | 
| 17 | 
         
             
            <p>You can skip the queue using Colab: <a href="https://colab.research.google.com/gist/ChenWu98/0aa4fe7be80f6b45d3d055df9f14353a/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p>"""
         
     | 
| 18 | 
         | 
| 19 | 
         
            +
            torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
         
     | 
| 20 | 
         
            +
            model_id_or_path = "CompVis/stable-diffusion-v1-4"
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 21 | 
         
             
            device_print = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
         
     | 
| 22 | 
         
             
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 23 | 
         | 
| 24 | 
         
            +
            if is_colab:
         
     | 
| 25 | 
         
            +
                scheduler = DDIMScheduler.from_config(model_id_or_path, subfolder="scheduler")
         
     | 
| 26 | 
         
            +
                pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler, torch_dtype=torch_dtype)
         
     | 
| 27 | 
         
            +
            else:
         
     | 
| 28 | 
         
            +
                import streamlit as st
         
     | 
| 29 | 
         
            +
                scheduler = DDIMScheduler.from_config(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], subfolder="scheduler")
         
     | 
| 30 | 
         
            +
                pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, use_auth_token=st.secrets["USER_TOKEN"], scheduler=scheduler, torch_dtype=torch_dtype)
         
     | 
| 31 | 
         
            +
            tokenizer = pipe.tokenizer
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            if torch.cuda.is_available():
         
     | 
| 34 | 
         
            +
                pipe = pipe.to("cuda")
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         | 
| 37 | 
         
             
            class LocalBlend:
         
     | 
| 38 | 
         |