Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from diffusers import
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
@@ -6,76 +6,17 @@ import utils
|
|
6 |
|
7 |
is_colab = utils.is_google_colab()
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
self.pipe_i2i = None
|
16 |
-
|
17 |
-
models = [
|
18 |
-
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
|
19 |
-
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
|
20 |
-
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
|
21 |
-
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
|
22 |
-
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
|
23 |
-
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
|
24 |
-
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
|
25 |
-
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
|
26 |
-
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
|
27 |
-
Model("Waifu", "hakurei/waifu-diffusion", ""),
|
28 |
-
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
|
29 |
-
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
|
30 |
-
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
31 |
-
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
|
32 |
-
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
|
33 |
-
]
|
34 |
-
|
35 |
-
scheduler = DPMSolverMultistepScheduler(
|
36 |
-
beta_start=0.00085,
|
37 |
-
beta_end=0.012,
|
38 |
-
beta_schedule="scaled_linear",
|
39 |
-
num_train_timesteps=1000,
|
40 |
-
trained_betas=None,
|
41 |
-
predict_epsilon=True,
|
42 |
-
thresholding=False,
|
43 |
-
algorithm_type="dpmsolver++",
|
44 |
-
solver_type="midpoint",
|
45 |
-
lower_order_final=True,
|
46 |
-
)
|
47 |
-
|
48 |
-
if is_colab:
|
49 |
-
models.insert(0, Model("Custom model", "", ""))
|
50 |
-
custom_model = models[0]
|
51 |
-
|
52 |
-
last_mode = "txt2img"
|
53 |
-
current_model = models[1] if is_colab else models[0]
|
54 |
-
current_model_path = current_model.path
|
55 |
-
|
56 |
-
if is_colab:
|
57 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
|
58 |
-
|
59 |
-
else: # download all models
|
60 |
-
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
61 |
-
for model in models[1:]:
|
62 |
-
try:
|
63 |
-
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
64 |
-
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
65 |
-
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
66 |
-
except:
|
67 |
-
models.remove(model)
|
68 |
-
pipe = models[1].pipe_t2i
|
69 |
-
|
70 |
if torch.cuda.is_available():
|
71 |
-
|
72 |
|
73 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
74 |
|
75 |
-
def custom_model_changed(path):
|
76 |
-
models[0].path = path
|
77 |
-
global current_model
|
78 |
-
current_model = models[0]
|
79 |
|
80 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", inpaint_image=None):
|
81 |
|
@@ -92,43 +33,6 @@ def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0
|
|
92 |
else:
|
93 |
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, inpaint_image)
|
94 |
|
95 |
-
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None, inpaint_image=None):
|
96 |
-
|
97 |
-
global last_mode
|
98 |
-
global pipe
|
99 |
-
global current_model_path
|
100 |
-
if model_path != current_model_path or last_mode != "txt2img":
|
101 |
-
current_model_path = model_path
|
102 |
-
|
103 |
-
if is_colab or current_model == custom_model:
|
104 |
-
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
105 |
-
else:
|
106 |
-
pipe.to("cpu")
|
107 |
-
pipe = current_model.pipe_t2i
|
108 |
-
|
109 |
-
if torch.cuda.is_available():
|
110 |
-
pipe = pipe.to("cuda")
|
111 |
-
last_mode = "txt2img"
|
112 |
-
|
113 |
-
prompt = current_model.prefix + prompt
|
114 |
-
|
115 |
-
if inpaint_image is not None:
|
116 |
-
init_image = inpaint_image["image"].convert("RGB").resize((width, height))
|
117 |
-
mask = inpaint_image["mask"].convert("RGB").resize((width, height))
|
118 |
-
|
119 |
-
result = pipe(
|
120 |
-
prompt,
|
121 |
-
negative_prompt = neg_prompt,
|
122 |
-
# num_images_per_prompt=n_images,
|
123 |
-
image = init_image,
|
124 |
-
mask_image = mask,
|
125 |
-
num_inference_steps = int(steps),
|
126 |
-
guidance_scale = guidance,
|
127 |
-
width = width,
|
128 |
-
height = height,
|
129 |
-
generator = generator)
|
130 |
-
|
131 |
-
return replace_nsfw_images(result)
|
132 |
|
133 |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
134 |
|
@@ -165,12 +69,14 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
165 |
|
166 |
return replace_nsfw_images(result)
|
167 |
|
|
|
168 |
def replace_nsfw_images(results):
|
169 |
for i in range(len(results.images)):
|
170 |
-
|
171 |
-
|
172 |
return results.images[0]
|
173 |
|
|
|
174 |
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
175 |
"""
|
176 |
with gr.Blocks(css=css) as demo:
|
@@ -178,13 +84,12 @@ with gr.Blocks(css=css) as demo:
|
|
178 |
f"""
|
179 |
<div class="finetuned-diffusion-div">
|
180 |
<div>
|
181 |
-
<h1>
|
182 |
</div>
|
183 |
<p>
|
184 |
-
Demo for
|
185 |
-
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
186 |
</p>
|
187 |
-
<p>You can skip the queue
|
188 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
189 |
</p>
|
190 |
</div>
|
@@ -194,16 +99,11 @@ with gr.Blocks(css=css) as demo:
|
|
194 |
|
195 |
with gr.Column(scale=55):
|
196 |
with gr.Group():
|
197 |
-
|
198 |
-
with gr.Box(visible=False) as custom_model_group:
|
199 |
-
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
|
200 |
-
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
201 |
-
|
202 |
with gr.Row():
|
203 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
204 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
205 |
|
206 |
-
|
207 |
image_out = gr.Image(height=512)
|
208 |
# gallery = gr.Gallery(
|
209 |
# label="Generated images", show_label=False, elem_id="gallery"
|
@@ -259,5 +159,5 @@ with gr.Blocks(css=css) as demo:
|
|
259 |
''')
|
260 |
|
261 |
if not is_colab:
|
262 |
-
|
263 |
demo.launch(debug=is_colab, share=is_colab)
|
|
|
1 |
+
from diffusers import CycleDiffusionPipeline, DDIMScheduler
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
6 |
|
7 |
is_colab = utils.is_google_colab()
|
8 |
|
9 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
|
10 |
+
num_train_timesteps=1000, clip_sample=False, set_alpha_to_one=False)
|
11 |
+
|
12 |
+
model_id_or_path = "CompVis/stable-diffusion-v1-4"
|
13 |
+
pipe = CycleDiffusionPipeline.from_pretrained(model_id_or_path, scheduler=scheduler).to("cuda")
|
14 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if torch.cuda.is_available():
|
16 |
+
pipe = pipe.to("cuda")
|
17 |
|
18 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", inpaint_image=None):
|
22 |
|
|
|
33 |
else:
|
34 |
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, inpaint_image)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
38 |
|
|
|
69 |
|
70 |
return replace_nsfw_images(result)
|
71 |
|
72 |
+
|
73 |
def replace_nsfw_images(results):
|
74 |
for i in range(len(results.images)):
|
75 |
+
if results.nsfw_content_detected[i]:
|
76 |
+
results.images[i] = Image.open("nsfw.png")
|
77 |
return results.images[0]
|
78 |
|
79 |
+
|
80 |
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}.finetuned-diffusion-div p a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
81 |
"""
|
82 |
with gr.Blocks(css=css) as demo:
|
|
|
84 |
f"""
|
85 |
<div class="finetuned-diffusion-div">
|
86 |
<div>
|
87 |
+
<h1>CycleDiffusion with Stable Diffusion</h1>
|
88 |
</div>
|
89 |
<p>
|
90 |
+
Demo for CycleDiffusion with Stable Diffusion, built with Diffusers 🧨 by HuggingFace 🤗.
|
|
|
91 |
</p>
|
92 |
+
<p>You can skip the queue in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
|
93 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
94 |
</p>
|
95 |
</div>
|
|
|
99 |
|
100 |
with gr.Column(scale=55):
|
101 |
with gr.Group():
|
102 |
+
|
|
|
|
|
|
|
|
|
103 |
with gr.Row():
|
104 |
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
105 |
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
106 |
|
|
|
107 |
image_out = gr.Image(height=512)
|
108 |
# gallery = gr.Gallery(
|
109 |
# label="Generated images", show_label=False, elem_id="gallery"
|
|
|
159 |
''')
|
160 |
|
161 |
if not is_colab:
|
162 |
+
demo.queue(concurrency_count=1)
|
163 |
demo.launch(debug=is_colab, share=is_colab)
|