Canstralian's picture
Upload 18 files
88a170b verified
import time
from typing import Optional
import subprocess
import torch
import os
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from tensorizer import TensorDeserializer
from tensorizer.utils import no_init_or_tensor
from collections import OrderedDict
from cog import BasePredictor, ConcatenateIterator, Input, Path
# from config import DEFAULT_MODEL_NAME, DEFAULT_CONFIG_PATH, load_tokenizer, load_tensorizer
from subclass import YieldingReplitCode
# Weights are either local or in a cloud bucket.
# For development, point to a local path on disk.
# This is the path from which we pull weights when there's no COG_WEIGHTS environment variable (COG_WEIGHTS is a thing for trainable models)
# TENSORIZER_WEIGHTS_PATH = "model/model.tensors"
TENSORIZER_WEIGHTS_PATH = "gs://replicate-weights/replit-code-v1-3b/model.tensors"
# Set this to a GCP URL when pushing the model
# TENSORIZER_WEIGHTS_PATH = None
DEFAULT_CONFIG_PATH = "model/"
TOKENIZER_PATH = "model/"
def maybe_download(path):
if path.startswith("gs://"):
st = time.time()
output_path = "/tmp/weights.tensors"
subprocess.check_call(["gcloud", "storage", "cp", path, output_path])
print(f"weights downloaded in {time.time() - st}")
return output_path
return path
class Predictor(BasePredictor):
def setup(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# set TOKENIZERS_PARALLELISM to false to avoid a warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
self.model = self.load_tensorizer(
weights=maybe_download(TENSORIZER_WEIGHTS_PATH), plaid_mode=True, cls=YieldingReplitCode, config_path=DEFAULT_CONFIG_PATH,
)
self.tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
def load_tensorizer(self, weights, plaid_mode, cls, config_path):
st = time.time()
print(f"deserializing weights from {weights}")
config = AutoConfig.from_pretrained(config_path, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
# with no_init_or_tensor():
# model = YieldingReplitCode.from_pretrained('./model/', config=config, trust_remote_code=True)
model = no_init_or_tensor(
lambda: cls.from_pretrained(
None, config=config, state_dict=OrderedDict(), trust_remote_code=True,
)
)
deserialized = TensorDeserializer(weights, plaid_mode=True)
deserialized.load_into_module(model)
try:
model = model.to(dtype=torch.bfloat16)
except:
pass
print(f"weights loaded in {time.time() - st}")
return model
def predict(
self,
prompt: str = Input(description=f"Text prompt"),
max_length: int = Input(
description="Maximum number of tokens to generate. A word is generally 2-3 tokens",
ge=1,
default=500,
),
temperature: float = Input(
description="Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value.",
ge=0.01,
le=5,
default=0.75,
),
top_p: float = Input(
description="When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens",
ge=0.01,
le=1.0,
default=1.0,
),
repetition_penalty: float = Input(
description="Penalty for repeated words in generated text; 1 is no penalty, values greater than 1 discourage repetition, less than 1 encourage it.",
ge=0.01,
le=5,
default=1,
),
length_penalty: float = Input(
description="Increasing the length_penalty parameter above 1.0 will cause the model to favor longer sequences, while decreasing it below 1.0 will cause the model to favor shorter sequences.",
ge=0.01,
le=5,
default=1,
),
no_repeat_ngram_size: int = Input(
description="If set to int > 0, all ngrams of size no_repeat_ngram_size can only occur once.",
ge=0,
default=0,
),
stop_sequence: str = Input(
description="Generation will hault if this token is produced. Currently, only single token stop sequences are support and it is recommended to use `###` as the stop sequence if you want to control generation termination.",
default=None,
),
seed: int = Input(
description="Set seed for reproducible outputs. Set to -1 for random seed.",
ge=-1,
default=-1,
),
debug: bool = Input(
description="provide debugging output in logs", default=False
),
) -> ConcatenateIterator[str]:
input = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
# set torch seed
if seed == -1:
torch.seed()
else:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
with torch.inference_mode():
first_token_yielded = False
prev_ids = []
for output in self.model.generate(
input,
max_length=max_length,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
):
cur_id = output.item()
# in order to properly handle spaces, we need to do our own tokenizing. Fun!
# we're building up a buffer of sub-word / punctuation tokens until we hit a space, and then yielding whole words + punctuation.
cur_token = self.tokenizer.convert_ids_to_tokens(cur_id)
# skip initial newline, which this almost always yields. hack - newline id = 13.
if not first_token_yielded and not prev_ids and cur_id == 187:
continue
# Ġ means a space, means we yield previous tokens
if cur_token.startswith("Ġ"): # this is not a standard G.
# first token
if not prev_ids:
prev_ids = [cur_id]
continue
# there are tokens to yield
else:
token = self.tokenizer.decode(prev_ids, clean_up_tokenization_spaces=False)
prev_ids = [cur_id]
if not first_token_yielded:
# no leading space for first token
token = token.strip()
first_token_yielded = True
yield token
# End token
elif cur_token == "<|endoftext|>":
break
elif stop_sequence and cur_token == stop_sequence:
break
else:
prev_ids.append(cur_id)
continue
# remove any special tokens such as </s>
token = self.tokenizer.decode(prev_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
if not first_token_yielded:
# no leading space for first token
token = token.strip()
first_token_yielded = True
yield token
if debug:
print(f"cur memory: {torch.cuda.memory_allocated()}")
print(f"max allocated: {torch.cuda.max_memory_allocated()}")
print(f"peak memory: {torch.cuda.max_memory_reserved()}")