Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,121 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
for val in history:
|
11 |
-
if val[0]:
|
12 |
-
messages.append({"role": "user", "content": val[0]})
|
13 |
-
if val[1]:
|
14 |
-
messages.append({"role": "assistant", "content": val[1]})
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
try:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
top_p=top_p,
|
27 |
-
):
|
28 |
-
token = message.choices[0].delta.content
|
29 |
-
response += token
|
30 |
-
yield response
|
31 |
except Exception as e:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
if __name__ == "__main__":
|
52 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import pyshark
|
4 |
+
from smolagents import Tool
|
5 |
|
6 |
+
# HFModelDownloadsTool Definition
|
7 |
+
class HFModelDownloadsTool(Tool):
|
8 |
+
name = "model_download_counter"
|
9 |
+
description = """
|
10 |
+
This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
|
11 |
+
It returns the name of the checkpoint."""
|
12 |
+
inputs = {
|
13 |
+
"task": {
|
14 |
+
"type": "string",
|
15 |
+
"description": "the task category (such as text-classification, depth-estimation, etc)",
|
16 |
+
}
|
17 |
+
}
|
18 |
+
output_type = "string"
|
19 |
|
20 |
+
def forward(self, task: str):
|
21 |
+
from huggingface_hub import list_models
|
22 |
|
23 |
+
model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
|
24 |
+
return model.id
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Instantiate the tool
|
27 |
+
model_downloads_tool = HFModelDownloadsTool()
|
28 |
+
|
29 |
+
# Function to integrate HFModelDownloadsTool into Gradio
|
30 |
+
def get_most_downloaded_model(task):
|
31 |
+
if not task:
|
32 |
+
return "Error: Task cannot be empty."
|
33 |
+
try:
|
34 |
+
return model_downloads_tool.forward(task)
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error: {str(e)}"
|
37 |
+
|
38 |
+
# Other functions (Nmap, Nikto, Hydra, PCAP) remain the same
|
39 |
+
def run_nmap(target):
|
40 |
+
if not target:
|
41 |
+
return "Error: Target cannot be empty."
|
42 |
+
try:
|
43 |
+
result = subprocess.run(["nmap", target], capture_output=True, text=True)
|
44 |
+
return result.stdout if result.returncode == 0 else "Error running Nmap scan."
|
45 |
+
except Exception as e:
|
46 |
+
return f"Error: {str(e)}"
|
47 |
+
|
48 |
+
def run_nikto(target):
|
49 |
+
if not target:
|
50 |
+
return "Error: Target cannot be empty."
|
51 |
+
try:
|
52 |
+
result = subprocess.run(["nikto", "-h", target], capture_output=True, text=True)
|
53 |
+
return result.stdout if result.returncode == 0 else "Error running Nikto scan."
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error: {str(e)}"
|
56 |
+
|
57 |
+
def run_hydra(target, service, wordlist):
|
58 |
+
if not target or not service or not wordlist:
|
59 |
+
return "Error: Target, service, and wordlist cannot be empty."
|
60 |
try:
|
61 |
+
result = subprocess.run(
|
62 |
+
["hydra", "-l", "admin", "-P", wordlist, f"{service}://{target}"],
|
63 |
+
capture_output=True, text=True
|
64 |
+
)
|
65 |
+
return result.stdout if result.returncode == 0 else "Error running Hydra attack."
|
|
|
|
|
|
|
|
|
|
|
66 |
except Exception as e:
|
67 |
+
return f"Error: {str(e)}"
|
68 |
+
|
69 |
+
def analyze_pcap(file_path):
|
70 |
+
if not file_path:
|
71 |
+
return "Error: Please upload a valid PCAP file."
|
72 |
+
try:
|
73 |
+
capture = pyshark.FileCapture(file_path['name'])
|
74 |
+
summary = "\n".join([str(pkt) for pkt in capture])
|
75 |
+
return f"PCAP Analysis Completed. Summary:\n{summary}"
|
76 |
+
except Exception as e:
|
77 |
+
return f"Error analyzing PCAP file: {str(e)}"
|
78 |
+
|
79 |
+
# Gradio Interface
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
gr.Markdown("## Cybersecurity Scanning Tool with Hugging Face Integration")
|
82 |
+
|
83 |
+
# Nmap Scan
|
84 |
+
with gr.Row():
|
85 |
+
nmap_target = gr.Textbox(label="Enter Target IP for Nmap Scan")
|
86 |
+
nmap_button = gr.Button("Run Nmap Scan")
|
87 |
+
nmap_result = gr.Textbox(label="Nmap Scan Results", interactive=False)
|
88 |
+
nmap_button.click(run_nmap, inputs=nmap_target, outputs=nmap_result)
|
89 |
+
|
90 |
+
# Nikto Scan
|
91 |
+
with gr.Row():
|
92 |
+
nikto_target = gr.Textbox(label="Enter Web Server URL for Nikto Scan")
|
93 |
+
nikto_button = gr.Button("Run Nikto Scan")
|
94 |
+
nikto_result = gr.Textbox(label="Nikto Scan Results", interactive=False)
|
95 |
+
nikto_button.click(run_nikto, inputs=nikto_target, outputs=nikto_result)
|
96 |
+
|
97 |
+
# Hydra Attack
|
98 |
+
with gr.Row():
|
99 |
+
hydra_target = gr.Textbox(label="Enter Target IP for Hydra Attack")
|
100 |
+
hydra_service = gr.Textbox(label="Enter Service (e.g., ssh, ftp)")
|
101 |
+
hydra_wordlist = gr.Textbox(label="Enter Path to Wordlist")
|
102 |
+
hydra_button = gr.Button("Run Hydra Attack")
|
103 |
+
hydra_result = gr.Textbox(label="Hydra Attack Results", interactive=False)
|
104 |
+
hydra_button.click(run_hydra, inputs=[hydra_target, hydra_service, hydra_wordlist], outputs=hydra_result)
|
105 |
+
|
106 |
+
# PCAP Analysis (Wireshark)
|
107 |
+
with gr.Row():
|
108 |
+
pcap_file = gr.File(label="Upload PCAP File")
|
109 |
+
pcap_button = gr.Button("Analyze PCAP File")
|
110 |
+
pcap_result = gr.Textbox(label="PCAP Analysis Results", interactive=False)
|
111 |
+
pcap_button.click(analyze_pcap, inputs=pcap_file, outputs=pcap_result)
|
112 |
+
|
113 |
+
# Hugging Face Most Downloaded Model Tool
|
114 |
+
with gr.Row():
|
115 |
+
hf_task_input = gr.Textbox(label="Enter Task Category (e.g., text-classification)")
|
116 |
+
hf_button = gr.Button("Get Most Downloaded Model")
|
117 |
+
hf_result = gr.Textbox(label="Most Downloaded Model", interactive=False)
|
118 |
+
hf_button.click(get_most_downloaded_model, inputs=hf_task_input, outputs=hf_result)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
demo.launch()
|