Spaces:
Runtime error
Runtime error
Commit
·
96a6f43
1
Parent(s):
3f33566
update
Browse files- cache/index.faiss +0 -0
- cache/index.pkl +0 -0
- clc/__pycache__/__init__.cpython-39.pyc +0 -0
- clc/__pycache__/gpt_service.cpython-39.pyc +0 -0
- clc/__pycache__/langchain_application.cpython-39.pyc +0 -0
- clc/__pycache__/source_service.cpython-39.pyc +0 -0
- clc/gpt_service.py +3 -8
- main.py +36 -43
- tests/test_duckduckgo_search.py +10 -0
- tests/test_duckpy.py +15 -0
- tests/test_gradio_slient.py +19 -0
cache/index.faiss
ADDED
|
Binary file (53.3 kB). View file
|
|
|
cache/index.pkl
ADDED
|
Binary file (5.43 kB). View file
|
|
|
clc/__pycache__/__init__.cpython-39.pyc
ADDED
|
Binary file (308 Bytes). View file
|
|
|
clc/__pycache__/gpt_service.cpython-39.pyc
ADDED
|
Binary file (1.95 kB). View file
|
|
|
clc/__pycache__/langchain_application.cpython-39.pyc
ADDED
|
Binary file (2.26 kB). View file
|
|
|
clc/__pycache__/source_service.cpython-39.pyc
ADDED
|
Binary file (1.91 kB). View file
|
|
|
clc/gpt_service.py
CHANGED
|
@@ -53,15 +53,10 @@ class ChatGLMService(LLM):
|
|
| 53 |
model_name_or_path,
|
| 54 |
trust_remote_code=True
|
| 55 |
)
|
| 56 |
-
self.model = (
|
| 57 |
-
|
| 58 |
-
model_name_or_path,
|
| 59 |
-
trust_remote_code=True)
|
| 60 |
-
.half()
|
| 61 |
-
.cuda()
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
# if __name__ == '__main__':
|
| 65 |
# config=LangChainCFG()
|
| 66 |
# chatLLM = ChatGLMService()
|
| 67 |
# chatLLM.load_model(model_name_or_path=config.llm_model_name)
|
|
|
|
|
|
| 53 |
model_name_or_path,
|
| 54 |
trust_remote_code=True
|
| 55 |
)
|
| 56 |
+
self.model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda()
|
| 57 |
+
self.model=self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# if __name__ == '__main__':
|
| 59 |
# config=LangChainCFG()
|
| 60 |
# chatLLM = ChatGLMService()
|
| 61 |
# chatLLM.load_model(model_name_or_path=config.llm_model_name)
|
| 62 |
+
|
main.py
CHANGED
|
@@ -1,15 +1,3 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
# -*- coding:utf-8 _*-
|
| 3 |
-
"""
|
| 4 |
-
@author:quincy qiang
|
| 5 |
-
@license: Apache Licence
|
| 6 |
-
@file: main.py
|
| 7 |
-
@time: 2023/04/17
|
| 8 |
-
@contact: [email protected]
|
| 9 |
-
@software: PyCharm
|
| 10 |
-
@description: coding..
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
import os
|
| 14 |
import shutil
|
| 15 |
|
|
@@ -17,11 +5,13 @@ import gradio as gr
|
|
| 17 |
|
| 18 |
from clc.langchain_application import LangChainApplication
|
| 19 |
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# 修改成自己的配置!!!
|
| 22 |
class LangChainCFG:
|
| 23 |
-
llm_model_name = '
|
| 24 |
-
embedding_model_name = '
|
| 25 |
vector_store_path = './cache'
|
| 26 |
docs_path = './docs'
|
| 27 |
|
|
@@ -58,22 +48,23 @@ def predict(input,
|
|
| 58 |
large_language_model,
|
| 59 |
embedding_model,
|
| 60 |
history=None):
|
| 61 |
-
print(large_language_model, embedding_model)
|
|
|
|
| 62 |
if history == None:
|
| 63 |
history = []
|
| 64 |
resp = application.get_knowledge_based_answer(
|
| 65 |
query=input,
|
| 66 |
-
history_len=
|
| 67 |
temperature=0.1,
|
| 68 |
top_p=0.9,
|
| 69 |
chat_history=history
|
| 70 |
)
|
| 71 |
-
print(resp)
|
| 72 |
history.append((input, resp['result']))
|
| 73 |
-
|
| 74 |
search_text = ''
|
| 75 |
for idx, source in enumerate(resp['source_documents'][:2]):
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
return '', history, history, search_text
|
| 78 |
|
| 79 |
|
|
@@ -83,6 +74,8 @@ with block as demo:
|
|
| 83 |
<center><font size=3>
|
| 84 |
</center></font>
|
| 85 |
""")
|
|
|
|
|
|
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column(scale=1):
|
| 88 |
embedding_model = gr.Dropdown([
|
|
@@ -112,7 +105,6 @@ with block as demo:
|
|
| 112 |
inputs=file,
|
| 113 |
outputs=selectFile)
|
| 114 |
with gr.Column(scale=4):
|
| 115 |
-
state = gr.State()
|
| 116 |
with gr.Row():
|
| 117 |
with gr.Column(scale=4):
|
| 118 |
chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
|
|
@@ -122,26 +114,27 @@ with block as demo:
|
|
| 122 |
send = gr.Button("🚀 发送")
|
| 123 |
with gr.Column(scale=2):
|
| 124 |
search = gr.Textbox(label='搜索结果')
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
|
|
|
|
| 5 |
|
| 6 |
from clc.langchain_application import LangChainApplication
|
| 7 |
|
| 8 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
| 9 |
+
|
| 10 |
|
| 11 |
# 修改成自己的配置!!!
|
| 12 |
class LangChainCFG:
|
| 13 |
+
llm_model_name = 'THUDM/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库
|
| 14 |
+
embedding_model_name = 'GanymedeNil/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库
|
| 15 |
vector_store_path = './cache'
|
| 16 |
docs_path = './docs'
|
| 17 |
|
|
|
|
| 48 |
large_language_model,
|
| 49 |
embedding_model,
|
| 50 |
history=None):
|
| 51 |
+
# print(large_language_model, embedding_model)
|
| 52 |
+
print(input)
|
| 53 |
if history == None:
|
| 54 |
history = []
|
| 55 |
resp = application.get_knowledge_based_answer(
|
| 56 |
query=input,
|
| 57 |
+
history_len=1,
|
| 58 |
temperature=0.1,
|
| 59 |
top_p=0.9,
|
| 60 |
chat_history=history
|
| 61 |
)
|
|
|
|
| 62 |
history.append((input, resp['result']))
|
|
|
|
| 63 |
search_text = ''
|
| 64 |
for idx, source in enumerate(resp['source_documents'][:2]):
|
| 65 |
+
sep = f'----------【搜索结果{idx}:】---------------\n'
|
| 66 |
+
search_text += f'{sep}\n{source.page_content}\n\n'
|
| 67 |
+
print(search_text)
|
| 68 |
return '', history, history, search_text
|
| 69 |
|
| 70 |
|
|
|
|
| 74 |
<center><font size=3>
|
| 75 |
</center></font>
|
| 76 |
""")
|
| 77 |
+
state = gr.State()
|
| 78 |
+
|
| 79 |
with gr.Row():
|
| 80 |
with gr.Column(scale=1):
|
| 81 |
embedding_model = gr.Dropdown([
|
|
|
|
| 105 |
inputs=file,
|
| 106 |
outputs=selectFile)
|
| 107 |
with gr.Column(scale=4):
|
|
|
|
| 108 |
with gr.Row():
|
| 109 |
with gr.Column(scale=4):
|
| 110 |
chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
|
|
|
|
| 114 |
send = gr.Button("🚀 发送")
|
| 115 |
with gr.Column(scale=2):
|
| 116 |
search = gr.Textbox(label='搜索结果')
|
| 117 |
+
|
| 118 |
+
# 发送按钮 提交
|
| 119 |
+
send.click(predict,
|
| 120 |
+
inputs=[
|
| 121 |
+
message, large_language_model,
|
| 122 |
+
embedding_model, state
|
| 123 |
+
],
|
| 124 |
+
outputs=[message, chatbot, state, search])
|
| 125 |
+
|
| 126 |
+
# 清空历史对话按钮 提交
|
| 127 |
+
clear_history.click(fn=clear_session,
|
| 128 |
+
inputs=[],
|
| 129 |
+
outputs=[chatbot, state],
|
| 130 |
+
queue=False)
|
| 131 |
+
|
| 132 |
+
# 输入框 回车
|
| 133 |
+
message.submit(predict,
|
| 134 |
+
inputs=[
|
| 135 |
+
message, large_language_model,
|
| 136 |
+
embedding_model, state
|
| 137 |
+
],
|
| 138 |
+
outputs=[message, chatbot, state, search])
|
| 139 |
+
|
| 140 |
+
demo.queue(concurrency_count=2).launch(server_name='0.0.0.0', server_port=8888, share=False,show_error=True, enable_queue=True)
|
tests/test_duckduckgo_search.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from duckduckgo_search import ddg
|
| 2 |
+
from duckduckgo_search.utils import SESSION
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
SESSION.proxies = {
|
| 6 |
+
"http": f"socks5h://localhost:7890",
|
| 7 |
+
"https": f"socks5h://localhost:7890"
|
| 8 |
+
}
|
| 9 |
+
r = ddg("马保国")
|
| 10 |
+
print(r)
|
tests/test_duckpy.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from duckpy import Client
|
| 2 |
+
|
| 3 |
+
client = Client()
|
| 4 |
+
|
| 5 |
+
results = client.search("Python Wikipedia")
|
| 6 |
+
|
| 7 |
+
# Prints first result title
|
| 8 |
+
print(results[0].title)
|
| 9 |
+
|
| 10 |
+
# Prints first result URL
|
| 11 |
+
print(results[0].url)
|
| 12 |
+
|
| 13 |
+
# Prints first result description
|
| 14 |
+
print(results[0].description)
|
| 15 |
+
# https://github.com/AmanoTeam/duckpy
|
tests/test_gradio_slient.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
|
| 3 |
+
import gradio as gra
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def user_greeting(name):
|
| 7 |
+
time.sleep(10)
|
| 8 |
+
return "Hi! " + name + " Welcome to your first Gradio application!😎"
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# define gradio interface and other parameters
|
| 12 |
+
app = gra.Interface(
|
| 13 |
+
fn=user_greeting,
|
| 14 |
+
inputs="text",
|
| 15 |
+
outputs="text",
|
| 16 |
+
)
|
| 17 |
+
app.launch(
|
| 18 |
+
server_name='0.0.0.0', server_port=8888, share=False,show_error=True, enable_queue=True
|
| 19 |
+
)
|