Chaitanya-02 commited on
Commit
1c9516d
·
verified ·
1 Parent(s): 3f53f98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -1,13 +1,14 @@
1
- import random
2
  import gradio as gr
3
  import numpy as np
 
4
  import spaces
 
5
  import torch
6
  import torchvision.transforms as transforms
7
  from PIL import Image
8
  from torchmetrics.functional.image import structural_similarity_index_measure as ssim
9
  from transformers import CLIPModel, CLIPProcessor
10
- import sourcecode
11
 
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
  model_path = "czl/stable-diffusion-v1-5"
@@ -90,7 +91,6 @@ def infer(
90
  ).to(device)
91
  embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
92
  embed_pairs_list = list(embed_pairs)
93
- # offset step by -1
94
  prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
95
  preprocess_input = transforms.Compose(
96
  [transforms.ToTensor(), transforms.Resize((512, 512))]
@@ -117,7 +117,6 @@ def infer(
117
  return image, seed, "Unsafe content detected", "Unsafe content detected"
118
  else:
119
  image = images_list.images[0]
120
-
121
  pred_image = transforms.ToTensor()(image).unsqueeze(0)
122
  ssim_score = ssim(pred_image, input_img_tensor).item()
123
  real_inputs = clip_processor(
 
 
1
  import gradio as gr
2
  import numpy as np
3
+ import random
4
  import spaces
5
+ import sourcecode
6
  import torch
7
  import torchvision.transforms as transforms
8
  from PIL import Image
9
  from torchmetrics.functional.image import structural_similarity_index_measure as ssim
10
  from transformers import CLIPModel, CLIPProcessor
11
+
12
 
13
  device = "cuda" if torch.cuda.is_available() else "cpu"
14
  model_path = "czl/stable-diffusion-v1-5"
 
91
  ).to(device)
92
  embed_pairs = zip(interpolated_prompt_embeds, interpolated_negative_prompts_embeds)
93
  embed_pairs_list = list(embed_pairs)
 
94
  prompt_embeds, negative_prompt_embeds = embed_pairs_list[interpolation_step - 1]
95
  preprocess_input = transforms.Compose(
96
  [transforms.ToTensor(), transforms.Resize((512, 512))]
 
117
  return image, seed, "Unsafe content detected", "Unsafe content detected"
118
  else:
119
  image = images_list.images[0]
 
120
  pred_image = transforms.ToTensor()(image).unsqueeze(0)
121
  ssim_score = ssim(pred_image, input_img_tensor).item()
122
  real_inputs = clip_processor(