Spaces:
Paused
Paused
feat(app): add actual init demo app
Browse files- app.py +82 -36
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
1 |
-
|
2 |
-
Model by @duyphung for @carperai
|
3 |
-
Dumb Simple Gradio by @jon-tow
|
4 |
-
"""
|
5 |
from string import Template
|
|
|
6 |
|
7 |
import torch
|
8 |
import gradio as gr
|
9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
|
11 |
|
12 |
-
|
13 |
-
|
14 |
"CarperAI/vicuna-13b-fine-tuned-rlhf",
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
model.cuda()
|
18 |
max_context_length = model.config.max_position_embeddings
|
19 |
-
max_new_tokens =
|
20 |
|
21 |
|
22 |
prompt_template = Template("""\
|
@@ -26,44 +32,70 @@ prompt_template = Template("""\
|
|
26 |
|
27 |
|
28 |
def bot(history):
|
|
|
29 |
history = history or []
|
30 |
-
|
31 |
# Hack to inject prompt formatting into the history
|
32 |
prompt_history = []
|
33 |
for human, bot in history:
|
|
|
|
|
|
|
34 |
prompt_history.append(
|
35 |
prompt_template.substitute(
|
36 |
human=human, bot=bot if bot is not None else "")
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
# for the max new tokens
|
44 |
-
inputs =
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Generate the response
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
max_new_tokens=max_new_tokens,
|
52 |
-
num_return_sequences=1,
|
53 |
do_sample=True,
|
|
|
|
|
54 |
temperature=1.0,
|
55 |
-
|
56 |
)
|
57 |
-
# Strip the initial prompt
|
58 |
-
tokens = tokens[:, inputs_length:]
|
59 |
-
|
60 |
-
# Process response
|
61 |
-
response = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
62 |
-
response = response.split("###")[0].strip()
|
63 |
|
64 |
-
#
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
def user(user_message, history):
|
@@ -71,14 +103,28 @@ def user(user_message, history):
|
|
71 |
|
72 |
|
73 |
with gr.Blocks() as demo:
|
74 |
-
gr.Markdown("
|
|
|
|
|
|
|
75 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=512)
|
76 |
-
msg = gr.Textbox()
|
77 |
-
clear = gr.Button("Clear")
|
78 |
state = gr.State([])
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
bot, chatbot, chatbot)
|
82 |
-
|
|
|
|
|
83 |
|
|
|
84 |
demo.launch(share=True)
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
2 |
from string import Template
|
3 |
+
from threading import Thread
|
4 |
|
5 |
import torch
|
6 |
import gradio as gr
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
8 |
|
9 |
|
10 |
+
auth_token = os.environ.get("HUGGINGFACE_TOKEN")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
12 |
"CarperAI/vicuna-13b-fine-tuned-rlhf",
|
13 |
+
use_auth_token=auth_token if auth_token else True,
|
14 |
+
)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
"CarperAI/vicuna-13b-fine-tuned-rlhf-fp16",
|
17 |
+
torch_dtype=torch.float16,
|
18 |
+
device_map="auto",
|
19 |
+
offload_folder="./offload",
|
20 |
+
low_cpu_mem_usage=True, # Not required for demo but leave for now
|
21 |
+
use_auth_token=auth_token if auth_token else True,
|
22 |
)
|
23 |
model.cuda()
|
24 |
max_context_length = model.config.max_position_embeddings
|
25 |
+
max_new_tokens = 500
|
26 |
|
27 |
|
28 |
prompt_template = Template("""\
|
|
|
32 |
|
33 |
|
34 |
def bot(history):
|
35 |
+
# print(f"History:\n`{history}`")
|
36 |
history = history or []
|
|
|
37 |
# Hack to inject prompt formatting into the history
|
38 |
prompt_history = []
|
39 |
for human, bot in history:
|
40 |
+
if bot is not None:
|
41 |
+
bot = bot.replace("<br>", "\n")
|
42 |
+
bot = bot.rstrip()
|
43 |
prompt_history.append(
|
44 |
prompt_template.substitute(
|
45 |
human=human, bot=bot if bot is not None else "")
|
46 |
)
|
47 |
|
48 |
+
messages = "\n\n".join(prompt_history)
|
49 |
+
messages = messages.rstrip()
|
50 |
+
# print(f"Messages:\n{messages}")
|
51 |
+
|
52 |
+
# Use only the most recent context up to the maximum context length with room left over
|
53 |
# for the max new tokens
|
54 |
+
inputs = tokenizer(messages, return_tensors='pt').to('cuda')
|
55 |
+
inputs = {k: v[:, -max_context_length + max_new_tokens:]
|
56 |
+
for k, v in inputs.items()}
|
57 |
+
if inputs.get("token_type_ids", None) is not None:
|
58 |
+
inputs.pop("token_type_ids")
|
59 |
+
# print(f"Inputs: {inputs}")
|
60 |
+
streamer = TextIteratorStreamer(
|
61 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
62 |
+
)
|
63 |
|
64 |
# Generate the response
|
65 |
+
generate_kwargs = dict(
|
66 |
+
inputs,
|
67 |
+
streamer=streamer,
|
68 |
max_new_tokens=max_new_tokens,
|
|
|
69 |
do_sample=True,
|
70 |
+
top_p=0.95,
|
71 |
+
top_k=1000,
|
72 |
temperature=1.0,
|
73 |
+
num_beams=1,
|
74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# print(f"Generating with kwargs: {generate_kwargs}")
|
77 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
78 |
+
thread.start()
|
79 |
+
|
80 |
+
partial_text = ""
|
81 |
+
for new_text in streamer:
|
82 |
+
# Process out the prompt separator. NOTE: we should tune with special tokens for this
|
83 |
+
new_text = new_text.replace("<br>", "\n")
|
84 |
+
# print(f"New text: `{new_text}`")
|
85 |
+
if "###" in new_text:
|
86 |
+
new_text = new_text.split("###")[0]
|
87 |
+
partial_text += new_text.strip()
|
88 |
+
history[-1][1] = partial_text
|
89 |
+
break
|
90 |
+
else:
|
91 |
+
# Filter empty trailing whitespaces
|
92 |
+
if new_text.isspace():
|
93 |
+
new_text = new_text.strip()
|
94 |
+
partial_text += new_text
|
95 |
+
history[-1][1] = partial_text
|
96 |
+
yield history
|
97 |
+
|
98 |
+
return partial_text
|
99 |
|
100 |
|
101 |
def user(user_message, history):
|
|
|
103 |
|
104 |
|
105 |
with gr.Blocks() as demo:
|
106 |
+
gr.Markdown("Chat-RLHF by CarperAI")
|
107 |
+
gr.HTML("<a href='https://huggingface.co/CarperAI/vicuna-13b-fine-tuned-rlhf'><code>CarperAI/vicuna-13b-fine-tuned-rlhf</a>")
|
108 |
+
gr.HTML('''<center><a href="https://huggingface.co/spaces/CarperAI/chat-rlhf?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
|
109 |
+
|
110 |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=512)
|
|
|
|
|
111 |
state = gr.State([])
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
|
115 |
+
show_label=False).style(container=False)
|
116 |
+
with gr.Column():
|
117 |
+
with gr.Row():
|
118 |
+
submit = gr.Button("Submit")
|
119 |
+
stop = gr.Button("Stop")
|
120 |
+
clear = gr.Button("Clear")
|
121 |
+
submit_event = msg.submit(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True).then(
|
122 |
+
bot, chatbot, chatbot)
|
123 |
+
submit_click_event = submit.click(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True).then(
|
124 |
bot, chatbot, chatbot)
|
125 |
+
stop.click(fn=None, inputs=None, outputs=None, cancels=[
|
126 |
+
submit_event, submit_click_event], queue=False)
|
127 |
+
clear.click(lambda: None, None, chatbot, queue=True)
|
128 |
|
129 |
+
demo.queue(max_size=32, concurrency_count=2)
|
130 |
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -1,2 +1,3 @@
|
|
|
|
1 |
torch
|
2 |
-
transformers
|
|
|
1 |
+
accelerate
|
2 |
torch
|
3 |
+
transformers>=4.28.0,<4.29.0
|