Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import random
|
| 3 |
import json
|
| 4 |
import torch
|
| 5 |
import wavio
|
|
@@ -24,6 +23,7 @@ from tqdm import tqdm
|
|
| 24 |
|
| 25 |
|
| 26 |
|
|
|
|
| 27 |
class Tango2Pipeline(DiffusionPipeline):
|
| 28 |
|
| 29 |
|
|
@@ -169,7 +169,6 @@ class Tango2Pipeline(DiffusionPipeline):
|
|
| 169 |
|
| 170 |
return AudioPipelineOutput(audios=wave)
|
| 171 |
|
| 172 |
-
max_64_bit_int = 2**63 - 1
|
| 173 |
|
| 174 |
# Automatic device detection
|
| 175 |
if torch.cuda.is_available():
|
|
@@ -250,73 +249,21 @@ pipe = Tango2Pipeline(vae=tango.vae,
|
|
| 250 |
scheduler=tango.scheduler
|
| 251 |
)
|
| 252 |
|
| 253 |
-
|
| 254 |
-
def update_seed(is_randomize_seed, seed):
|
| 255 |
-
if is_randomize_seed:
|
| 256 |
-
return random.randint(0, max_64_bit_int)
|
| 257 |
-
return seed
|
| 258 |
-
|
| 259 |
-
def check(
|
| 260 |
-
prompt,
|
| 261 |
-
output_format,
|
| 262 |
-
output_number,
|
| 263 |
-
steps,
|
| 264 |
-
guidance,
|
| 265 |
-
is_randomize_seed,
|
| 266 |
-
seed
|
| 267 |
-
):
|
| 268 |
-
if prompt is None or prompt == "":
|
| 269 |
-
raise gr.Error("Please provide a prompt input.")
|
| 270 |
-
if not output_number in [1, 2, 3]:
|
| 271 |
-
raise gr.Error("Please ask for 1, 2 or 3 output files.")
|
| 272 |
-
|
| 273 |
-
def update_output(output_format, output_number):
|
| 274 |
-
return [
|
| 275 |
-
gr.update(format = output_format),
|
| 276 |
-
gr.update(format = output_format, visible = (2 <= output_number)),
|
| 277 |
-
gr.update(format = output_format, visible = (output_number == 3))
|
| 278 |
-
]
|
| 279 |
-
|
| 280 |
-
def generate_output(output_wave, output_format, output_number, output_index):
|
| 281 |
-
if (output_number < output_index):
|
| 282 |
-
return gr.update(format = output_format, visible = False)
|
| 283 |
-
|
| 284 |
-
output_wave = output_wave.audios[output_index - 1]
|
| 285 |
-
output_filename = "tmp" + str(output_index) + ".wav"
|
| 286 |
-
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
|
| 287 |
-
|
| 288 |
-
if (output_format == "mp3"):
|
| 289 |
-
AudioSegment.from_wav("tmp" + str(output_index) + ".wav").export("tmp" + str(output_index) + ".mp3", format = "mp3")
|
| 290 |
-
output_filename = "tmp" + str(output_index) + ".mp3"
|
| 291 |
-
|
| 292 |
-
return gr.update(value = output_filename, format = output_format, visible = True)
|
| 293 |
|
| 294 |
-
@spaces.GPU(duration=
|
| 295 |
-
def gradio_generate(
|
| 296 |
-
prompt,
|
| 297 |
-
output_format,
|
| 298 |
-
output_number,
|
| 299 |
-
steps,
|
| 300 |
-
guidance,
|
| 301 |
-
is_randomize_seed,
|
| 302 |
-
seed
|
| 303 |
-
):
|
| 304 |
-
if seed is None:
|
| 305 |
-
seed = random.randint(0, max_64_bit_int)
|
| 306 |
-
|
| 307 |
-
random.seed(seed)
|
| 308 |
-
torch.manual_seed(seed)
|
| 309 |
-
|
| 310 |
-
output_wave = pipe(prompt, steps, guidance, samples = output_number) ## Using pipeline automatically uses flash attention for torch2.0 above
|
| 311 |
-
|
| 312 |
#output_wave = tango.generate(prompt, steps, guidance)
|
| 313 |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
-
return
|
| 316 |
-
generate_output(output_wave, output_format, output_number, 1),
|
| 317 |
-
generate_output(output_wave, output_format, output_number, 2),
|
| 318 |
-
generate_output(output_wave, output_format, output_number, 3)
|
| 319 |
-
]
|
| 320 |
|
| 321 |
# description_text = """
|
| 322 |
# <p><a href="https://huggingface.co/spaces/declare-lab/tango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
|
@@ -338,130 +285,53 @@ def gradio_generate(
|
|
| 338 |
# <p/>
|
| 339 |
# """
|
| 340 |
description_text = """
|
| 341 |
-
<h1><center>Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization</center></h1>
|
| 342 |
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
| 343 |
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
|
| 344 |
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
|
| 345 |
<p/>
|
| 346 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
# Gradio interface
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
output_audio_2,
|
| 387 |
-
output_audio_3
|
| 388 |
-
], queue = False, show_progress = False).success(fn = gradio_generate, inputs = [
|
| 389 |
-
input_text,
|
| 390 |
-
output_format,
|
| 391 |
-
output_number,
|
| 392 |
-
denoising_steps,
|
| 393 |
-
guidance_scale,
|
| 394 |
-
randomize_seed,
|
| 395 |
-
seed
|
| 396 |
-
], outputs = [
|
| 397 |
-
output_audio_1,
|
| 398 |
-
output_audio_2,
|
| 399 |
-
output_audio_3
|
| 400 |
-
], scroll_to_output = True)
|
| 401 |
-
|
| 402 |
-
gr.Examples(
|
| 403 |
-
fn = gradio_generate,
|
| 404 |
-
inputs = [
|
| 405 |
-
input_text,
|
| 406 |
-
output_format,
|
| 407 |
-
output_number,
|
| 408 |
-
denoising_steps,
|
| 409 |
-
guidance_scale,
|
| 410 |
-
randomize_seed,
|
| 411 |
-
seed
|
| 412 |
-
],
|
| 413 |
-
outputs = [
|
| 414 |
-
output_audio_1,
|
| 415 |
-
output_audio_2,
|
| 416 |
-
output_audio_3
|
| 417 |
-
],
|
| 418 |
-
examples = [
|
| 419 |
-
["Quiet speech and then airplane flying away", "wav", 3, 200, 3, False, 123],
|
| 420 |
-
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing", "wav", 3, 200, 3, False, 123],
|
| 421 |
-
["Ducks quack and water splashes with some animal screeching in the background", "wav", 3, 200, 3, False, 123],
|
| 422 |
-
["Describe the sound of the ocean", "wav", 3, 200, 3, False, 123],
|
| 423 |
-
["A woman and a baby are having a conversation", "wav", 3, 200, 3, False, 123],
|
| 424 |
-
["A man speaks followed by a popping noise and laughter", "wav", 3, 200, 3, False, 123],
|
| 425 |
-
["A cup is filled from a faucet", "wav", 3, 200, 3, False, 123],
|
| 426 |
-
["An audience cheering and clapping", "wav", 3, 200, 3, False, 123],
|
| 427 |
-
["Rolling thunder with lightning strikes", "wav", 3, 200, 3, False, 123],
|
| 428 |
-
["A dog barking and a cat mewing and a racing car passes by", "wav", 3, 200, 3, False, 123],
|
| 429 |
-
["Gentle water stream, birds chirping and sudden gun shot", "wav", 3, 200, 3, False, 123],
|
| 430 |
-
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone.", 3, 200, 3, False, 123],
|
| 431 |
-
["A dog barking", "wav", 3, 200, 3, False, 123],
|
| 432 |
-
["A cat meowing", "wav", 3, 200, 3, False, 123],
|
| 433 |
-
["Wooden table tapping sound while water pouring", "wav", 3, 200, 3, False, 123],
|
| 434 |
-
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker", "wav", 3, 200, 3, False, 123],
|
| 435 |
-
["two gunshots followed by birds flying away while chirping", "wav", 3, 200, 3, False, 123],
|
| 436 |
-
["Whistling with birds chirping", "wav", 3, 200, 3, False, 123],
|
| 437 |
-
["A person snoring", "wav", 3, 200, 3, False, 123],
|
| 438 |
-
["Motor vehicles are driving with loud engines and a person whistles", "wav", 3, 200, 3, False, 123],
|
| 439 |
-
["People cheering in a stadium while thunder and lightning strikes", "wav", 3, 200, 3, False, 123],
|
| 440 |
-
["A helicopter is in flight", "wav", 3, 200, 3, False, 123],
|
| 441 |
-
["A dog barking and a man talking and a racing car passes by", "wav", 3, 200, 3, False, 123],
|
| 442 |
-
],
|
| 443 |
-
cache_examples = "lazy",
|
| 444 |
-
)
|
| 445 |
-
|
| 446 |
-
gr.Markdown(
|
| 447 |
-
"""
|
| 448 |
-
## How to prompt your sound
|
| 449 |
-
You can use round brackets to increase the importance of a part:
|
| 450 |
-
```
|
| 451 |
-
Peaceful and (calming) ambient music with singing bowl and other instruments
|
| 452 |
-
```
|
| 453 |
-
You can use several levels of round brackets to even more increase the importance of a part:
|
| 454 |
-
```
|
| 455 |
-
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments
|
| 456 |
-
```
|
| 457 |
-
You can use number instead of several round brackets:
|
| 458 |
-
```
|
| 459 |
-
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
|
| 460 |
-
```
|
| 461 |
-
You can do the same thing with square brackets to decrease the importance of a part:
|
| 462 |
-
```
|
| 463 |
-
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
|
| 464 |
-
"""
|
| 465 |
-
)
|
| 466 |
-
|
| 467 |
-
interface.queue(10).launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
import wavio
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
|
| 26 |
+
|
| 27 |
class Tango2Pipeline(DiffusionPipeline):
|
| 28 |
|
| 29 |
|
|
|
|
| 169 |
|
| 170 |
return AudioPipelineOutput(audios=wave)
|
| 171 |
|
|
|
|
| 172 |
|
| 173 |
# Automatic device detection
|
| 174 |
if torch.cuda.is_available():
|
|
|
|
| 249 |
scheduler=tango.scheduler
|
| 250 |
)
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
@spaces.GPU(duration=60)
|
| 254 |
+
def gradio_generate(prompt, output_format, steps, guidance):
|
| 255 |
+
output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
#output_wave = tango.generate(prompt, steps, guidance)
|
| 257 |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
|
| 258 |
+
output_wave = output_wave.audios[0]
|
| 259 |
+
output_filename = "temp.wav"
|
| 260 |
+
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
|
| 261 |
+
|
| 262 |
+
if (output_format == "mp3"):
|
| 263 |
+
AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3")
|
| 264 |
+
output_filename = "temp.mp3"
|
| 265 |
|
| 266 |
+
return output_filename
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
# description_text = """
|
| 269 |
# <p><a href="https://huggingface.co/spaces/declare-lab/tango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
|
|
|
| 285 |
# <p/>
|
| 286 |
# """
|
| 287 |
description_text = """
|
|
|
|
| 288 |
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
| 289 |
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
|
| 290 |
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
|
| 291 |
<p/>
|
| 292 |
"""
|
| 293 |
+
# Gradio input and output components
|
| 294 |
+
input_text = gr.Textbox(lines=2, label="Prompt")
|
| 295 |
+
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
|
| 296 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
| 297 |
+
denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True)
|
| 298 |
+
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
|
| 299 |
|
| 300 |
# Gradio interface
|
| 301 |
+
gr_interface = gr.Interface(
|
| 302 |
+
fn=gradio_generate,
|
| 303 |
+
inputs=[input_text, output_format, denoising_steps, guidance_scale],
|
| 304 |
+
outputs=[output_audio],
|
| 305 |
+
title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization",
|
| 306 |
+
description=description_text,
|
| 307 |
+
allow_flagging=False,
|
| 308 |
+
examples=[
|
| 309 |
+
["Quiet speech and then and airplane flying away"],
|
| 310 |
+
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"],
|
| 311 |
+
["Ducks quack and water splashes with some animal screeching in the background"],
|
| 312 |
+
["Describe the sound of the ocean"],
|
| 313 |
+
["A woman and a baby are having a conversation"],
|
| 314 |
+
["A man speaks followed by a popping noise and laughter"],
|
| 315 |
+
["A cup is filled from a faucet"],
|
| 316 |
+
["An audience cheering and clapping"],
|
| 317 |
+
["Rolling thunder with lightning strikes"],
|
| 318 |
+
["A dog barking and a cat mewing and a racing car passes by"],
|
| 319 |
+
["Gentle water stream, birds chirping and sudden gun shot"],
|
| 320 |
+
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."],
|
| 321 |
+
["A dog barking"],
|
| 322 |
+
["A cat meowing"],
|
| 323 |
+
["Wooden table tapping sound while water pouring"],
|
| 324 |
+
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"],
|
| 325 |
+
["two gunshots followed by birds flying away while chirping"],
|
| 326 |
+
["Whistling with birds chirping"],
|
| 327 |
+
["A person snoring"],
|
| 328 |
+
["Motor vehicles are driving with loud engines and a person whistles"],
|
| 329 |
+
["People cheering in a stadium while thunder and lightning strikes"],
|
| 330 |
+
["A helicopter is in flight"],
|
| 331 |
+
["A dog barking and a man talking and a racing car passes by"],
|
| 332 |
+
],
|
| 333 |
+
cache_examples="lazy", # Turn on to cache.
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# Launch Gradio app
|
| 337 |
+
gr_interface.queue(10).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|