Spaces:
Runtime error
Runtime error
File size: 4,771 Bytes
e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 e0b0933 14d3b25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
---
title: WhiteRabbitNeo
emoji: 💬
colorFrom: green
colorTo: purple
sdk: gradio
sdk_version: 5.9.1
app_file: app.py
pinned: true
license: mit
thumbnail: >-
https://cdn-uploads.huggingface.co/production/uploads/64fbe312dcc5ce730e763dc6/VWduEhDSRJXeSqhUzYwCt.png
---
## RabbitRedux: A Specialized Cybersecurity Code Classifier
**RabbitRedux** is an AI-powered model designed to classify and analyze code snippets, with a focus on cybersecurity applications like penetration testing, ransomware analysis, and security automation. Built upon the WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B model, RabbitRedux is specialized for cybersecurity and offers high accuracy in analyzing and categorizing both general and cybersecurity-related code functions.
**Key Features**
- Penetration Testing Support: Assists in reconnaissance, enumeration, and task automation during penetration testing.
- Ransomware Analysis: Tracks and analyzes ransomware trends, providing actionable insights into emerging threats.
- Code Classification: Efficiently classifies code in general programming and cybersecurity-specific contexts.
- Adaptive Learning: Utilizes adapter transformers for modular training, making it flexible for quick adaptations to different tasks.
**Datasets Used**
RabbitRedux leverages a range of datasets focused on both general and cybersecurity-specific tasks:
- Canstralian/Wordlists: A collection of cybersecurity-related wordlists for improved analysis.
- Canstralian/CyberExploitDB: A database of known cybersecurity exploits for model training.
- Canstralian/pentesting_dataset: A dataset containing pentesting-specific code snippets and functions.
- Canstralian/ShellCommands: A dataset dedicated to shell commands commonly used in security operations.
## Model Details
**Developer:** Canstralian
**Base Model:** WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B, replit/replit-code-v1_5-3b
**Library:** Adapter Transformers
**License:** MIT License
**Metrics:** Precision, Recall, F1 Score
**Evaluation:** Evaluated for code classification tasks with an emphasis on cybersecurity
**Tags:** code, text-generation-inference, security, cybersecurity
## Usage
To use **RabbitRedux** for code classification, simply load the model and apply it for your cybersecurity tasks:
```python
Copy code
from adapters import AutoAdapterModel
# Load the base model and RabbitRedux adapter
model = AutoAdapterModel.from_pretrained("replit/replit-code-v1_5-3b")
model.load_adapter("Canstralian/RabbitRedux", set_active=True)
# Use the model for classification tasks
predictions = model.predict(["Your code snippet here"])
Example Use Case
This model is perfect for tasks such as:
Classifying code snippets related to penetration testing.
Analyzing code related to security vulnerabilities or exploits.
Automatically categorizing code used in ransomware analysis.
Example:
python
Copy code
code_snippet = """import os
# Command to start a reverse shell
os.system('nc -lvp 4444')"""
predictions = model.predict([code_snippet])
print(predictions) # Output: ['Reverse Shell', 'Penetration Testing']
```
## Installation
**Install dependencies:**
```bash
pip install transformers
pip install git+https://github.com/canstralian/RabbitRedux.git
```
**Load the model:**
```python
from adapters import AutoAdapterModel
model = AutoAdapterModel.from_pretrained("replit/replit-code-v1_5-3b")
model.load_adapter("Canstralian/RabbitRedux", set_active=True)
```
### Evaluation Metrics
RabbitRedux has been evaluated on code classification tasks using the following metrics:
- Precision: 0.95
- Recall: 0.92
- F1 Score: 0.93
These metrics indicate high accuracy in classifying code in the cybersecurity domain.
## Contributions
**RabbitRedux** is an open-source project, and contributions are welcome! You can contribute by forking the repository, submitting pull requests, or sharing ideas for improvement.
### GitHub Repository: RabbitRedux on GitHub
### Issues & Feedback: Feel free to open issues or submit feedback directly through the repository.
## Citation
If you use RabbitRedux in your work or research, please cite it as follows:
### BibTeX:
```bibtex
@misc{canstralian2024rabbitredux,
author = {Canstralian},
title = {RabbitRedux: A Model for Code Classification in Cybersecurity},
year = {2024},
url = {https://github.com/canstralian/RabbitRedux},
}
APA: Canstralian. (2024). RabbitRedux: A Model for Code Classification in Cybersecurity. Retrieved from https://github.com/canstralian/RabbitRedux
```
## License
RabbitRedux is licensed under the MIT License. See LICENSE for more details.
## Contact
For more information or to get in touch with the developers, please visit Canstralian's GitHub or reach out through the repository issues page.
|