Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	File size: 5,837 Bytes
			
			| 0fdb130 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | from torch import nn
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
def get_eval_metric(y_pred, y_test):
    return {
        'accuracy': accuracy_score(y_test, y_pred),
        'precision': precision_score(y_test, y_pred, average='weighted'),
        'recall': recall_score(y_test, y_pred, average='weighted'),
        'f1': f1_score(y_test, y_pred, average='weighted'),
        'confusion_mat': confusion_matrix(y_test, y_pred, normalize='true'),
    }
class MLP(nn.Module):
    def __init__(self, input_size=768, hidden_size=256, output_size=3, dropout_rate=.2, class_weights=None):
        super(MLP, self).__init__()
        self.class_weights = class_weights
        
        self.activation = nn.ReLU()
        self.bn1 = nn.BatchNorm1d(hidden_size)
        self.dropout = nn.Dropout(dropout_rate)
        
        self.fc1 = nn.Linear(input_size, hidden_size)        
        self.fc2 = nn.Linear(hidden_size, output_size)
    def forward(self, x):
        input_is_dict = False
        if isinstance(x, dict):
            assert "sentence_embedding" in x
            input_is_dict = True
            x = x['sentence_embedding']
        x = self.fc1(x)
        x = self.bn1(x)
        x = self.activation(x)
        x = self.dropout(x)
        
        x = self.fc2(x)
        
        if input_is_dict:
            return {'logits': x}
        return x
    
    def predict(self, x):
        _, predicted = torch.max(self.forward(x), 1)
        print('I am predict')
        return predicted
    
    def predict_proba(self, x):
        print('I am predict_proba')
        return self.forward(x)
    
    def get_loss_fn(self):
        return nn.CrossEntropyLoss(weight=self.class_weights, reduction='mean')
        
if __name__ == '__main__':
    from setfit.__init__ import SetFitModel, Trainer, TrainingArguments
    from datasets import Dataset, load_dataset, DatasetDict
    from sentence_transformers import SentenceTransformer, models, util
    from sentence_transformers.losses import BatchAllTripletLoss, BatchHardSoftMarginTripletLoss, BatchHardTripletLoss, BatchSemiHardTripletLoss
    from sklearn.linear_model import LogisticRegression
    import sys
    import os
    import warnings
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from datetime import datetime
    import torch.optim as optim
    from statistics import mean
    from pprint import pprint
    from torch.utils.data import DataLoader, TensorDataset
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    from safetensors.torch import load_model, save_model
    from itertools import chain
    from time import perf_counter
    from tqdm import trange
    from collections import Counter
    from sklearn.utils.class_weight import compute_class_weight
    import numpy as np
    import matplotlib.pyplot as plt
    warnings.filterwarnings("ignore")
    
    SEED = 1003200212 + 1
    DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    print(DEVICE)
    start = perf_counter()
    sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '..')))
    dataset_dir = os.path.abspath(os.path.join(os.getcwd(), '..', '..', 'financial_dataset'))
    sys.path.append(dataset_dir)
    
    from load_test_data import get_labels_df, get_texts
    from train_classificator import plot_labels_distribution
    
    def split_text(text, chunk_size=1200, chunk_overlap=200):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=chunk_size, chunk_overlap=chunk_overlap,
            length_function = len, separators=[" ", ",", "\n"]
        )
        text_chunks = text_splitter.create_documents([text])
        return text_chunks
    labels_dir = dataset_dir + '/csvs/'
    df = get_labels_df(labels_dir)
    texts_dir = dataset_dir + '/txts/'
    texts = get_texts(texts_dir)
    # df = df.iloc[[0, 13, 113], :]
    # print(df.loc[:, 'Label'])
    # texts = [texts[0]] + [texts[13]] + [texts[113]]
    print(len(df), len(texts))
    print(mean(list(map(len, texts))))
    documents = [split_text(text, chunk_size=3_200, chunk_overlap=200) for text in texts]
    docs_chunks = [[doc.page_content for doc in document] for document in documents]
    # print([len(text_chunks)for text_chunks in docs_chunks])
    
    model = SentenceTransformer('financial-roberta')
    model = model.to('cuda:0')
    
    # # Get sentence embeddings for each text
    doc_embeddings = [model.encode(doc_chunks, show_progress_bar=True).tolist() for doc_chunks in docs_chunks]
    embeddings = [embedding for doc_embedding in doc_embeddings for embedding in doc_embedding]
    texts = [text for doc_chunks in docs_chunks for text in doc_chunks]
    labels = np.repeat(df['Label'], [len(document) for document in documents]).tolist()
    # print(df.loc[:, 'Label'])
    # print([len(text) for text in texts])
    # print([len(emb) for emb in embeddings])
    # print(labels)
    dataset = Dataset.from_dict({
        'texts': texts,
        'labels': labels,
        'embeddings': embeddings,
    })
    print(len(dataset['texts']))
    print(dataset['labels'])
    
    dataset = dataset.class_encode_column('labels')
    print(len(dataset))
    train_test_dataset = dataset.train_test_split(test_size=.2, stratify_by_column='labels')
    val_test_dataset = train_test_dataset['test'].train_test_split(test_size=.5, stratify_by_column='labels')
 
    dataset = DatasetDict({
        'train': train_test_dataset['train'],
        'val': val_test_dataset['train'],
        'test': val_test_dataset['test']
        }
    )
    plot_labels_distribution(dataset, save_as_filename='plots/finetuned_st_label_distr.png')
    dataset.push_to_hub("CabraVC/vector_dataset_roberta-fine-tuned", private=True)
     | 
