Martin Dočekal
commited on
Commit
·
732e363
1
Parent(s):
d38d998
init. code for ROUGERaw wrapper
Browse files- README.md +87 -6
- app.py +12 -0
- rouge_raw.py +231 -0
README.md
CHANGED
|
@@ -1,12 +1,93 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: RougeRaw
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.19.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- evaluate
|
| 12 |
+
- metric
|
| 13 |
+
description: >-
|
| 14 |
+
ROUGE RAW is language-agnostic variant of ROUGE without stemmer, stop words and synonymas.
|
| 15 |
+
This is a wrapper around the original http://hdl.handle.net/11234/1-2615 script.
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# Metric Card for RougeRaw
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Metric Description
|
| 22 |
+
|
| 23 |
+
ROUGE RAW is language-agnostic variant of ROUGE without stemmer, stop words and synonymas.
|
| 24 |
+
This is a wrapper around the original http://hdl.handle.net/11234/1-2615 script.
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
## How to Use
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
>>> rougeraw = evaluate.load('CZLC/rouge_raw')
|
| 32 |
+
>>> predictions = ["the cat is on the mat", "hello there"]
|
| 33 |
+
>>> references = ["the cat is on the mat", "hello there"]
|
| 34 |
+
>>> results = rougeraw.compute(predictions=predictions, references=references)
|
| 35 |
+
>>> print(results)
|
| 36 |
+
{'rougeraw1_precision': 1.0, 'rougeraw1_recall': 1.0, 'rougeraw1_fmeasure': 1.0, 'rougeraw2_precision': 1.0, 'rougeraw2_recall': 1.0, 'rougeraw2_fmeasure': 1.0, 'rougerawl_precision': 1.0, 'rougerawl_recall': 1.0, 'rougerawl_fmeasure': 1.0}
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
### Inputs
|
| 41 |
+
predictions: list of predictions to evaluate. Each prediction should be a string with tokens separated by spaces.
|
| 42 |
+
references: list of reference for each prediction. Each reference should be a string with tokens separated by space
|
| 43 |
+
|
| 44 |
+
### Output Values
|
| 45 |
+
- rougeraw1_precision
|
| 46 |
+
- rougeraw1_recall
|
| 47 |
+
- rougeraw1_fmeasure
|
| 48 |
+
- rougeraw2_precision
|
| 49 |
+
- rougeraw2_recall
|
| 50 |
+
- rougeraw2_fmeasure
|
| 51 |
+
- rougerawl_precision
|
| 52 |
+
- rougerawl_recall
|
| 53 |
+
- rougerawl_fmeasure
|
| 54 |
+
|
| 55 |
+
Output Example(s):
|
| 56 |
+
```python
|
| 57 |
+
{'rougeraw1_precision': 1.0, 'rougeraw1_recall': 1.0, 'rougeraw1_fmeasure': 1.0, 'rougeraw2_precision': 1.0, 'rougeraw2_recall': 1.0, 'rougeraw2_fmeasure': 1.0, 'rougerawl_precision': 1.0, 'rougerawl_recall': 1.0, 'rougerawl_fmeasure': 1.0}
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
This metric outputs a dictionary, containing the scores.
|
| 61 |
+
|
| 62 |
+
## Citation(s)
|
| 63 |
+
```bibtex
|
| 64 |
+
@inproceedings{straka-etal-2018-sumeczech,
|
| 65 |
+
title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
|
| 66 |
+
author = "Straka, Milan and
|
| 67 |
+
Mediankin, Nikita and
|
| 68 |
+
Kocmi, Tom and
|
| 69 |
+
{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
|
| 70 |
+
Hude{\v{c}}ek, Vojt{\v{e}}ch and
|
| 71 |
+
Haji{\v{c}}, Jan",
|
| 72 |
+
editor = "Calzolari, Nicoletta and
|
| 73 |
+
Choukri, Khalid and
|
| 74 |
+
Cieri, Christopher and
|
| 75 |
+
Declerck, Thierry and
|
| 76 |
+
Goggi, Sara and
|
| 77 |
+
Hasida, Koiti and
|
| 78 |
+
Isahara, Hitoshi and
|
| 79 |
+
Maegaard, Bente and
|
| 80 |
+
Mariani, Joseph and
|
| 81 |
+
Mazo, H{\'e}l{\`e}ne and
|
| 82 |
+
Moreno, Asuncion and
|
| 83 |
+
Odijk, Jan and
|
| 84 |
+
Piperidis, Stelios and
|
| 85 |
+
Tokunaga, Takenobu",
|
| 86 |
+
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
|
| 87 |
+
month = may,
|
| 88 |
+
year = "2018",
|
| 89 |
+
address = "Miyazaki, Japan",
|
| 90 |
+
publisher = "European Language Resources Association (ELRA)",
|
| 91 |
+
url = "https://aclanthology.org/L18-1551",
|
| 92 |
+
}
|
| 93 |
+
```
|
app.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: UTF-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on 02.02.24
|
| 4 |
+
|
| 5 |
+
:author: Martin Dočekal
|
| 6 |
+
"""
|
| 7 |
+
import evaluate
|
| 8 |
+
from evaluate.utils import launch_gradio_widget
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
module = evaluate.load("accuracy")
|
| 12 |
+
launch_gradio_widget(module)
|
rouge_raw.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: UTF-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on 02.02.24
|
| 4 |
+
Module for raw ROUGE score calculation from:
|
| 5 |
+
@inproceedings{straka-etal-2018-sumeczech,
|
| 6 |
+
title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
|
| 7 |
+
author = "Straka, Milan and
|
| 8 |
+
Mediankin, Nikita and
|
| 9 |
+
Kocmi, Tom and
|
| 10 |
+
{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
|
| 11 |
+
Hude{\v{c}}ek, Vojt{\v{e}}ch and
|
| 12 |
+
Haji{\v{c}}, Jan",
|
| 13 |
+
editor = "Calzolari, Nicoletta and
|
| 14 |
+
Choukri, Khalid and
|
| 15 |
+
Cieri, Christopher and
|
| 16 |
+
Declerck, Thierry and
|
| 17 |
+
Goggi, Sara and
|
| 18 |
+
Hasida, Koiti and
|
| 19 |
+
Isahara, Hitoshi and
|
| 20 |
+
Maegaard, Bente and
|
| 21 |
+
Mariani, Joseph and
|
| 22 |
+
Mazo, H{\'e}l{\`e}ne and
|
| 23 |
+
Moreno, Asuncion and
|
| 24 |
+
Odijk, Jan and
|
| 25 |
+
Piperidis, Stelios and
|
| 26 |
+
Tokunaga, Takenobu",
|
| 27 |
+
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
|
| 28 |
+
month = may,
|
| 29 |
+
year = "2018",
|
| 30 |
+
address = "Miyazaki, Japan",
|
| 31 |
+
publisher = "European Language Resources Association (ELRA)",
|
| 32 |
+
url = "https://aclanthology.org/L18-1551",
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
:author: Martin Dočekal
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
import re
|
| 40 |
+
from typing import Sequence
|
| 41 |
+
|
| 42 |
+
import datasets
|
| 43 |
+
import evaluate
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class RougeRaw:
|
| 47 |
+
"""
|
| 48 |
+
This is the original implementation of the ROUGERaw metric.
|
| 49 |
+
Compute RougeRAW-1, RougeRAW-2, RougeRAW-L metrics.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
class FScore:
|
| 53 |
+
"""F1 score representation."""
|
| 54 |
+
def __init__(self, correct, gold, system):
|
| 55 |
+
self.p = correct / system if system else 0.
|
| 56 |
+
self.r = correct / gold if gold else 0.
|
| 57 |
+
self.f = 2 * correct / (system + gold) if system + gold else 0.
|
| 58 |
+
|
| 59 |
+
def _rouge_n(self, n, gold_words, system_words):
|
| 60 |
+
"""Compute Rouge-n for given words."""
|
| 61 |
+
def n_grams(n, words):
|
| 62 |
+
ngrams = {}
|
| 63 |
+
total = 0
|
| 64 |
+
for i in range(len(words) - n + 1):
|
| 65 |
+
ngram = "\t".join(words[i:i + n])
|
| 66 |
+
ngrams[ngram] = 1 + ngrams.get(ngram, 0)
|
| 67 |
+
total += 1
|
| 68 |
+
return ngrams, total
|
| 69 |
+
|
| 70 |
+
gold_ngrams, gold_total = n_grams(n, gold_words)
|
| 71 |
+
system_ngrams, system_total = n_grams(n, system_words)
|
| 72 |
+
|
| 73 |
+
intersection = 0
|
| 74 |
+
for ngram in system_ngrams:
|
| 75 |
+
intersection += min(system_ngrams[ngram], gold_ngrams.get(ngram, 0))
|
| 76 |
+
|
| 77 |
+
return self.FScore(intersection, gold_total, system_total)
|
| 78 |
+
|
| 79 |
+
def _rouge_l(self, gold_words, system_words):
|
| 80 |
+
"""Compute Rouge-L for given words."""
|
| 81 |
+
lcs = [[0] * len(system_words) for _ in gold_words]
|
| 82 |
+
for r in range(len(gold_words)):
|
| 83 |
+
for s in range(len(system_words)):
|
| 84 |
+
if gold_words[r] == system_words[s]:
|
| 85 |
+
lcs[r][s] = 1 + (lcs[r - 1][s - 1] if r and s else 0)
|
| 86 |
+
lcs[r][s] = max(lcs[r][s], lcs[r - 1][s] if r else 0)
|
| 87 |
+
lcs[r][s] = max(lcs[r][s], lcs[r][s - 1] if s else 0)
|
| 88 |
+
|
| 89 |
+
return self.FScore(lcs[-1][-1], len(gold_words), len(system_words))
|
| 90 |
+
|
| 91 |
+
def _tokenize(self, text):
|
| 92 |
+
"""Tokenize given text."""
|
| 93 |
+
return re.sub(r"\s+", " ", re.sub(r"\b", " ", text, re.UNICODE), re.UNICODE).strip().split(" ")
|
| 94 |
+
|
| 95 |
+
def document(self, gold, system):
|
| 96 |
+
"""Compute RougeRAW-1, RougeRAW-2, RougeRAW-L for given documents.
|
| 97 |
+
Each document should be a string.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
assert isinstance(gold, str) and isinstance(system, str), "Expected string arguments"
|
| 101 |
+
|
| 102 |
+
lc_gold_words = [word.lower() for word in self._tokenize(gold)]
|
| 103 |
+
lc_system_words = [word.lower() for word in self._tokenize(system)]
|
| 104 |
+
|
| 105 |
+
return {
|
| 106 |
+
"1": self._rouge_n(1, lc_gold_words, lc_system_words),
|
| 107 |
+
"2": self._rouge_n(2, lc_gold_words, lc_system_words),
|
| 108 |
+
"L": self._rouge_l(lc_gold_words, lc_system_words),
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
def corpus(self, gold, system):
|
| 112 |
+
"""Compute RougeRAW-1, RougeRAW-2, RougeRAW-L for given corpora.
|
| 113 |
+
Each corpus should be a collection of documents, each document a string.
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
assert isinstance(gold, list) and isinstance(system, list), "Expected list arguments"
|
| 117 |
+
assert len(gold) == len(system), "Given corpora should be of the same length"
|
| 118 |
+
|
| 119 |
+
rouge = {key: self.FScore(0, 0, 0) for key in ["1", "2", "L"]}
|
| 120 |
+
|
| 121 |
+
if len(gold):
|
| 122 |
+
for gold_document, system_document in zip(gold, system):
|
| 123 |
+
for key, value in self.document(gold_document, system_document).items():
|
| 124 |
+
rouge[key].p += value.p
|
| 125 |
+
rouge[key].r += value.r
|
| 126 |
+
rouge[key].f += value.f
|
| 127 |
+
|
| 128 |
+
for key in rouge:
|
| 129 |
+
rouge[key].p /= len(gold)
|
| 130 |
+
rouge[key].r /= len(gold)
|
| 131 |
+
rouge[key].f /= len(gold)
|
| 132 |
+
|
| 133 |
+
return rouge
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
_CITATION = """\
|
| 137 |
+
@inproceedings{straka-etal-2018-sumeczech,
|
| 138 |
+
title = "{S}ume{C}zech: Large {C}zech News-Based Summarization Dataset",
|
| 139 |
+
author = "Straka, Milan and
|
| 140 |
+
Mediankin, Nikita and
|
| 141 |
+
Kocmi, Tom and
|
| 142 |
+
{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
|
| 143 |
+
Hude{\v{c}}ek, Vojt{\v{e}}ch and
|
| 144 |
+
Haji{\v{c}}, Jan",
|
| 145 |
+
editor = "Calzolari, Nicoletta and
|
| 146 |
+
Choukri, Khalid and
|
| 147 |
+
Cieri, Christopher and
|
| 148 |
+
Declerck, Thierry and
|
| 149 |
+
Goggi, Sara and
|
| 150 |
+
Hasida, Koiti and
|
| 151 |
+
Isahara, Hitoshi and
|
| 152 |
+
Maegaard, Bente and
|
| 153 |
+
Mariani, Joseph and
|
| 154 |
+
Mazo, H{\'e}l{\`e}ne and
|
| 155 |
+
Moreno, Asuncion and
|
| 156 |
+
Odijk, Jan and
|
| 157 |
+
Piperidis, Stelios and
|
| 158 |
+
Tokunaga, Takenobu",
|
| 159 |
+
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
|
| 160 |
+
month = may,
|
| 161 |
+
year = "2018",
|
| 162 |
+
address = "Miyazaki, Japan",
|
| 163 |
+
publisher = "European Language Resources Association (ELRA)",
|
| 164 |
+
url = "https://aclanthology.org/L18-1551",
|
| 165 |
+
}
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
_DESCRIPTION = """\
|
| 169 |
+
ROUGE RAW is language-agnostic variant of ROUGE without stemmer, stop words and synonymas.
|
| 170 |
+
This is a wrapper around the original http://hdl.handle.net/11234/1-2615 script.
|
| 171 |
+
"""
|
| 172 |
+
|
| 173 |
+
_KWARGS_DESCRIPTION = """
|
| 174 |
+
ROCUE RAW metric for list of predictions and references.
|
| 175 |
+
Args:
|
| 176 |
+
predictions: list of predictions to evaluate. Each prediction should be a string with tokens separated by spaces.
|
| 177 |
+
references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces.
|
| 178 |
+
Returns:
|
| 179 |
+
rougeraw1_precision
|
| 180 |
+
rougeraw1_recall
|
| 181 |
+
rougeraw1_fmeasure
|
| 182 |
+
rougeraw2_precision
|
| 183 |
+
rougeraw2_recall
|
| 184 |
+
rougeraw2_fmeasure
|
| 185 |
+
rougerawl_precision
|
| 186 |
+
rougerawl_recall
|
| 187 |
+
rougerawl_fmeasure
|
| 188 |
+
Examples:
|
| 189 |
+
>>> rougeraw = evaluate.load('CZLC/rouge_raw')
|
| 190 |
+
>>> predictions = ["the cat is on the mat", "hello there"]
|
| 191 |
+
>>> references = ["the cat is on the mat", "hello there"]
|
| 192 |
+
>>> results = rougeraw.compute(predictions=predictions, references=references)
|
| 193 |
+
>>> print(results)
|
| 194 |
+
{'rougeraw1_precision': 1.0, 'rougeraw1_recall': 1.0, 'rougeraw1_fmeasure': 1.0, 'rougeraw2_precision': 1.0, 'rougeraw2_recall': 1.0, 'rougeraw2_fmeasure': 1.0, 'rougerawl_precision': 1.0, 'rougerawl_recall': 1.0, 'rougerawl_fmeasure': 1.0}
|
| 195 |
+
"""
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 199 |
+
class Rouge(evaluate.Metric):
|
| 200 |
+
def _info(self):
|
| 201 |
+
return evaluate.MetricInfo(
|
| 202 |
+
description=_DESCRIPTION,
|
| 203 |
+
citation=_CITATION,
|
| 204 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 205 |
+
features=[
|
| 206 |
+
datasets.Features(
|
| 207 |
+
{
|
| 208 |
+
"predictions": datasets.Value("string", id="sequence"),
|
| 209 |
+
"references": datasets.Value("string", id="sequence"),
|
| 210 |
+
}
|
| 211 |
+
),
|
| 212 |
+
],
|
| 213 |
+
reference_urls=[
|
| 214 |
+
"http://hdl.handle.net/11234/1-2615",
|
| 215 |
+
],
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
def _compute(self, predictions: Sequence[str], references: Sequence[str]):
|
| 219 |
+
res = RougeRaw().corpus(references, predictions)
|
| 220 |
+
return {
|
| 221 |
+
"rougeraw1_precision": res["1"].p,
|
| 222 |
+
"rougeraw1_recall": res["1"].r,
|
| 223 |
+
"rougeraw1_fmeasure": res["1"].f,
|
| 224 |
+
"rougeraw2_precision": res["2"].p,
|
| 225 |
+
"rougeraw2_recall": res["2"].r,
|
| 226 |
+
"rougeraw2_fmeasure": res["2"].f,
|
| 227 |
+
"rougerawl_precision": res["L"].p,
|
| 228 |
+
"rougerawl_recall": res["L"].r,
|
| 229 |
+
"rougerawl_fmeasure": res["L"].f,
|
| 230 |
+
}
|
| 231 |
+
|