Spaces:
Runtime error
Runtime error
Upload ops.py
Browse files
ops.py
ADDED
|
@@ -0,0 +1,1067 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import division
|
| 2 |
+
import math
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
|
| 5 |
+
from mi_gru_cell import MiGRUCell
|
| 6 |
+
from mi_lstm_cell import MiLSTMCell
|
| 7 |
+
from config import config
|
| 8 |
+
|
| 9 |
+
eps = 1e-20
|
| 10 |
+
inf = 1e30
|
| 11 |
+
|
| 12 |
+
####################################### variables ########################################
|
| 13 |
+
|
| 14 |
+
'''
|
| 15 |
+
Initializes a weight matrix variable given a shape and a name.
|
| 16 |
+
Uses random_normal initialization if 1d, otherwise uses xavier.
|
| 17 |
+
'''
|
| 18 |
+
def getWeight(shape, name = ""):
|
| 19 |
+
with tf.variable_scope("weights"):
|
| 20 |
+
initializer = tf.contrib.layers.xavier_initializer()
|
| 21 |
+
# if len(shape) == 1: # good?
|
| 22 |
+
# initializer = tf.random_normal_initializer()
|
| 23 |
+
W = tf.get_variable("weight" + name, shape = shape, initializer = initializer)
|
| 24 |
+
return W
|
| 25 |
+
|
| 26 |
+
'''
|
| 27 |
+
Initializes a weight matrix variable given a shape and a name. Uses xavier
|
| 28 |
+
'''
|
| 29 |
+
def getKernel(shape, name = ""):
|
| 30 |
+
with tf.variable_scope("kernels"):
|
| 31 |
+
initializer = tf.contrib.layers.xavier_initializer()
|
| 32 |
+
W = tf.get_variable("kernel" + name, shape = shape, initializer = initializer)
|
| 33 |
+
return W
|
| 34 |
+
|
| 35 |
+
'''
|
| 36 |
+
Initializes a bias variable given a shape and a name.
|
| 37 |
+
'''
|
| 38 |
+
def getBias(shape, name = ""):
|
| 39 |
+
with tf.variable_scope("biases"):
|
| 40 |
+
initializer = tf.zeros_initializer()
|
| 41 |
+
b = tf.get_variable("bias" + name, shape = shape, initializer = initializer)
|
| 42 |
+
return b
|
| 43 |
+
|
| 44 |
+
######################################### basics #########################################
|
| 45 |
+
|
| 46 |
+
'''
|
| 47 |
+
Multiplies input inp of any depth by a 2d weight matrix.
|
| 48 |
+
'''
|
| 49 |
+
# switch with conv 1?
|
| 50 |
+
def multiply(inp, W):
|
| 51 |
+
inDim = tf.shape(W)[0]
|
| 52 |
+
outDim = tf.shape(W)[1]
|
| 53 |
+
newDims = tf.concat([tf.shape(inp)[:-1], tf.fill((1,), outDim)], axis = 0)
|
| 54 |
+
|
| 55 |
+
inp = tf.reshape(inp, (-1, inDim))
|
| 56 |
+
output = tf.matmul(inp, W)
|
| 57 |
+
output = tf.reshape(output, newDims)
|
| 58 |
+
|
| 59 |
+
return output
|
| 60 |
+
|
| 61 |
+
'''
|
| 62 |
+
Concatenates x and y. Support broadcasting.
|
| 63 |
+
Optionally concatenate multiplication of x * y
|
| 64 |
+
'''
|
| 65 |
+
def concat(x, y, dim, mul = False, extendY = False):
|
| 66 |
+
if extendY:
|
| 67 |
+
y = tf.expand_dims(y, axis = -2)
|
| 68 |
+
# broadcasting to have the same shape
|
| 69 |
+
y = tf.zeros_like(x) + y
|
| 70 |
+
|
| 71 |
+
if mul:
|
| 72 |
+
out = tf.concat([x, y, x * y], axis = -1)
|
| 73 |
+
dim *= 3
|
| 74 |
+
else:
|
| 75 |
+
out = tf.concat([x, y], axis = -1)
|
| 76 |
+
dim *= 2
|
| 77 |
+
|
| 78 |
+
return out, dim
|
| 79 |
+
|
| 80 |
+
'''
|
| 81 |
+
Adds L2 regularization for weight and kernel variables.
|
| 82 |
+
'''
|
| 83 |
+
# add l2 in the tf way
|
| 84 |
+
def L2RegularizationOp(l2 = None):
|
| 85 |
+
if l2 is None:
|
| 86 |
+
l2 = config.l2
|
| 87 |
+
l2Loss = 0
|
| 88 |
+
names = ["weight", "kernel"]
|
| 89 |
+
for var in tf.trainable_variables():
|
| 90 |
+
if any((name in var.name.lower()) for name in names):
|
| 91 |
+
l2Loss += tf.nn.l2_loss(var)
|
| 92 |
+
return l2 * l2Loss
|
| 93 |
+
|
| 94 |
+
######################################### attention #########################################
|
| 95 |
+
|
| 96 |
+
'''
|
| 97 |
+
Transform vectors to scalar logits.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
interactions: input vectors
|
| 101 |
+
[batchSize, N, dim]
|
| 102 |
+
|
| 103 |
+
dim: dimension of input vectors
|
| 104 |
+
|
| 105 |
+
sumMod: LIN for linear transformation to scalars.
|
| 106 |
+
SUM to sum up vectors entries to get scalar logit.
|
| 107 |
+
|
| 108 |
+
dropout: dropout value over inputs (for linear case)
|
| 109 |
+
|
| 110 |
+
Return matching scalar for each interaction.
|
| 111 |
+
[batchSize, N]
|
| 112 |
+
'''
|
| 113 |
+
sumMod = ["LIN", "SUM"]
|
| 114 |
+
def inter2logits(interactions, dim, sumMod = "LIN", dropout = 1.0, name = "", reuse = None):
|
| 115 |
+
with tf.variable_scope("inter2logits" + name, reuse = reuse):
|
| 116 |
+
if sumMod == "SUM":
|
| 117 |
+
logits = tf.reduce_sum(interactions, axis = -1)
|
| 118 |
+
else: # "LIN"
|
| 119 |
+
logits = linear(interactions, dim, 1, dropout = dropout, name = "logits")
|
| 120 |
+
return logits
|
| 121 |
+
|
| 122 |
+
'''
|
| 123 |
+
Transforms vectors to probability distribution.
|
| 124 |
+
Calls inter2logits and then softmax over these.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
interactions: input vectors
|
| 128 |
+
[batchSize, N, dim]
|
| 129 |
+
|
| 130 |
+
dim: dimension of input vectors
|
| 131 |
+
|
| 132 |
+
sumMod: LIN for linear transformation to scalars.
|
| 133 |
+
SUM to sum up vectors entries to get scalar logit.
|
| 134 |
+
|
| 135 |
+
dropout: dropout value over inputs (for linear case)
|
| 136 |
+
|
| 137 |
+
Return attention distribution over interactions.
|
| 138 |
+
[batchSize, N]
|
| 139 |
+
'''
|
| 140 |
+
def inter2att(interactions, dim, dropout = 1.0, name = "", reuse = None):
|
| 141 |
+
with tf.variable_scope("inter2att" + name, reuse = reuse):
|
| 142 |
+
logits = inter2logits(interactions, dim, dropout = dropout)
|
| 143 |
+
attention = tf.nn.softmax(logits)
|
| 144 |
+
return attention
|
| 145 |
+
|
| 146 |
+
'''
|
| 147 |
+
Sums up features using attention distribution to get a weighted average over them.
|
| 148 |
+
'''
|
| 149 |
+
def att2Smry(attention, features):
|
| 150 |
+
return tf.reduce_sum(tf.expand_dims(attention, axis = -1) * features, axis = -2)
|
| 151 |
+
|
| 152 |
+
####################################### activations ########################################
|
| 153 |
+
|
| 154 |
+
'''
|
| 155 |
+
Performs a variant of ReLU based on config.relu
|
| 156 |
+
PRM for PReLU
|
| 157 |
+
ELU for ELU
|
| 158 |
+
LKY for Leaky ReLU
|
| 159 |
+
otherwise, standard ReLU
|
| 160 |
+
'''
|
| 161 |
+
def relu(inp):
|
| 162 |
+
if config.relu == "PRM":
|
| 163 |
+
with tf.variable_scope(None, default_name = "prelu"):
|
| 164 |
+
alpha = tf.get_variable("alpha", shape = inp.get_shape()[-1],
|
| 165 |
+
initializer = tf.constant_initializer(0.25))
|
| 166 |
+
pos = tf.nn.relu(inp)
|
| 167 |
+
neg = - (alpha * tf.nn.relu(-inp))
|
| 168 |
+
output = pos + neg
|
| 169 |
+
elif config.relu == "ELU":
|
| 170 |
+
output = tf.nn.elu(inp)
|
| 171 |
+
# elif config.relu == "SELU":
|
| 172 |
+
# output = tf.nn.selu(inp)
|
| 173 |
+
elif config.relu == "LKY":
|
| 174 |
+
# output = tf.nn.leaky_relu(inp, config.reluAlpha)
|
| 175 |
+
output = tf.maximum(inp, config.reluAlpha * inp)
|
| 176 |
+
elif config.relu == "STD": # STD
|
| 177 |
+
output = tf.nn.relu(inp)
|
| 178 |
+
|
| 179 |
+
return output
|
| 180 |
+
|
| 181 |
+
activations = {
|
| 182 |
+
"NON": tf.identity, # lambda inp: inp
|
| 183 |
+
"TANH": tf.tanh,
|
| 184 |
+
"SIGMOID": tf.sigmoid,
|
| 185 |
+
"RELU": relu,
|
| 186 |
+
"ELU": tf.nn.elu
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
# Sample from Gumbel(0, 1)
|
| 190 |
+
def sampleGumbel(shape):
|
| 191 |
+
U = tf.random_uniform(shape, minval = 0, maxval = 1)
|
| 192 |
+
return -tf.log(-tf.log(U + eps) + eps)
|
| 193 |
+
|
| 194 |
+
# Draw a clevr_sample from the Gumbel-Softmax distribution
|
| 195 |
+
def gumbelSoftmaxSample(logits, temperature):
|
| 196 |
+
y = logits + sampleGumbel(tf.shape(logits))
|
| 197 |
+
return tf.nn.softmax(y / temperature)
|
| 198 |
+
|
| 199 |
+
def gumbelSoftmax(logits, temperature, train): # hard = False
|
| 200 |
+
# Sample from the Gumbel-Softmax distribution and optionally discretize.
|
| 201 |
+
# Args:
|
| 202 |
+
# logits: [batch_size, n_class] unnormalized log-probs
|
| 203 |
+
# temperature: non-negative scalar
|
| 204 |
+
# hard: if True, take argmax, but differentiate w.r.t. soft clevr_sample y
|
| 205 |
+
# Returns:
|
| 206 |
+
# [batch_size, n_class] clevr_sample from the Gumbel-Softmax distribution.
|
| 207 |
+
# If hard=True, then the returned clevr_sample will be one-hot, otherwise it will
|
| 208 |
+
# be a probabilitiy distribution that sums to 1 across classes
|
| 209 |
+
|
| 210 |
+
y = gumbelSoftmaxSample(logits, temperature)
|
| 211 |
+
|
| 212 |
+
# k = tf.shape(logits)[-1]
|
| 213 |
+
# yHard = tf.cast(tf.one_hot(tf.argmax(y,1),k), y.dtype)
|
| 214 |
+
yHard = tf.cast(tf.equal(y, tf.reduce_max(y, 1, keep_dims = True)), y.dtype)
|
| 215 |
+
yNew = tf.stop_gradient(yHard - y) + y
|
| 216 |
+
|
| 217 |
+
if config.gumbelSoftmaxBoth:
|
| 218 |
+
return y
|
| 219 |
+
if config.gumbelArgmaxBoth:
|
| 220 |
+
return yNew
|
| 221 |
+
ret = tf.cond(train, lambda: y, lambda: yNew)
|
| 222 |
+
|
| 223 |
+
return ret
|
| 224 |
+
|
| 225 |
+
def softmaxDiscrete(logits, temperature, train):
|
| 226 |
+
if config.gumbelSoftmax:
|
| 227 |
+
return gumbelSoftmax(logits, temperature = temperature, train = train)
|
| 228 |
+
else:
|
| 229 |
+
return tf.nn.softmax(logits)
|
| 230 |
+
|
| 231 |
+
def parametricDropout(name, train):
|
| 232 |
+
var = tf.get_variable("varDp" + name, shape = (), initializer = tf.constant_initializer(2),
|
| 233 |
+
dtype = tf.float32)
|
| 234 |
+
dropout = tf.cond(train, lambda: tf.sigmoid(var), lambda: 1.0)
|
| 235 |
+
return dropout
|
| 236 |
+
|
| 237 |
+
###################################### sequence helpers ######################################
|
| 238 |
+
|
| 239 |
+
'''
|
| 240 |
+
Casts exponential mask over a sequence with sequence length.
|
| 241 |
+
Used to prepare logits before softmax.
|
| 242 |
+
'''
|
| 243 |
+
def expMask(seq, seqLength):
|
| 244 |
+
maxLength = tf.shape(seq)[-1]
|
| 245 |
+
mask = (1 - tf.cast(tf.sequence_mask(seqLength, maxLength), tf.float32)) * (-inf)
|
| 246 |
+
masked = seq + mask
|
| 247 |
+
return masked
|
| 248 |
+
|
| 249 |
+
'''
|
| 250 |
+
Computes seq2seq loss between logits and target sequences, with given lengths.
|
| 251 |
+
'''
|
| 252 |
+
def seq2SeqLoss(logits, targets, lengths):
|
| 253 |
+
mask = tf.sequence_mask(lengths, maxlen = tf.shape(targets)[1])
|
| 254 |
+
loss = tf.contrib.seq2seq.sequence_loss(logits, targets, tf.to_float(mask))
|
| 255 |
+
return loss
|
| 256 |
+
|
| 257 |
+
'''
|
| 258 |
+
Computes seq2seq loss between logits and target sequences, with given lengths.
|
| 259 |
+
acc1: accuracy per symbol
|
| 260 |
+
acc2: accuracy per sequence
|
| 261 |
+
'''
|
| 262 |
+
def seq2seqAcc(preds, targets, lengths):
|
| 263 |
+
mask = tf.sequence_mask(lengths, maxlen = tf.shape(targets)[1])
|
| 264 |
+
corrects = tf.logical_and(tf.equal(preds, targets), mask)
|
| 265 |
+
numCorrects = tf.reduce_sum(tf.to_int32(corrects), axis = 1)
|
| 266 |
+
|
| 267 |
+
acc1 = tf.to_float(numCorrects) / (tf.to_float(lengths) + eps) # add small eps instead?
|
| 268 |
+
acc1 = tf.reduce_mean(acc1)
|
| 269 |
+
|
| 270 |
+
acc2 = tf.to_float(tf.equal(numCorrects, lengths))
|
| 271 |
+
acc2 = tf.reduce_mean(acc2)
|
| 272 |
+
|
| 273 |
+
return acc1, acc2
|
| 274 |
+
|
| 275 |
+
########################################### linear ###########################################
|
| 276 |
+
|
| 277 |
+
'''
|
| 278 |
+
linear transformation.
|
| 279 |
+
|
| 280 |
+
Args:
|
| 281 |
+
inp: input to transform
|
| 282 |
+
inDim: input dimension
|
| 283 |
+
outDim: output dimension
|
| 284 |
+
dropout: dropout over input
|
| 285 |
+
batchNorm: if not None, applies batch normalization to inputs
|
| 286 |
+
addBias: True to add bias
|
| 287 |
+
bias: initial bias value
|
| 288 |
+
act: if not None, activation to use after linear transformation
|
| 289 |
+
actLayer: if True and act is not None, applies another linear transformation on top of previous
|
| 290 |
+
actDropout: dropout to apply in the optional second linear transformation
|
| 291 |
+
retVars: if True, return parameters (weight and bias)
|
| 292 |
+
|
| 293 |
+
Returns linear transformation result.
|
| 294 |
+
'''
|
| 295 |
+
# batchNorm = {"decay": float, "train": Tensor}
|
| 296 |
+
# actLayer: if activation is not non, stack another linear layer
|
| 297 |
+
# maybe change naming scheme such that if name = "" than use it as default_name (-->unique?)
|
| 298 |
+
def linear(inp, inDim, outDim, dropout = 1.0,
|
| 299 |
+
batchNorm = None, addBias = True, bias = 0.0,
|
| 300 |
+
act = "NON", actLayer = True, actDropout = 1.0,
|
| 301 |
+
retVars = False, name = "", reuse = None):
|
| 302 |
+
|
| 303 |
+
with tf.variable_scope("linearLayer" + name, reuse = reuse):
|
| 304 |
+
W = getWeight((inDim, outDim) if outDim > 1 else (inDim, ))
|
| 305 |
+
b = getBias((outDim, ) if outDim > 1 else ()) + bias
|
| 306 |
+
|
| 307 |
+
if batchNorm is not None:
|
| 308 |
+
inp = tf.contrib.layers.batch_norm(inp, decay = batchNorm["decay"],
|
| 309 |
+
center = True, scale = True, is_training = batchNorm["train"], updates_collections = None)
|
| 310 |
+
# tf.layers.batch_normalization, axis -1 ?
|
| 311 |
+
|
| 312 |
+
inp = tf.nn.dropout(inp, dropout)
|
| 313 |
+
|
| 314 |
+
if outDim > 1:
|
| 315 |
+
output = multiply(inp, W)
|
| 316 |
+
else:
|
| 317 |
+
output = tf.reduce_sum(inp * W, axis = -1)
|
| 318 |
+
|
| 319 |
+
if addBias:
|
| 320 |
+
output += b
|
| 321 |
+
|
| 322 |
+
output = activations[act](output)
|
| 323 |
+
|
| 324 |
+
# good?
|
| 325 |
+
if act != "NON" and actLayer:
|
| 326 |
+
output = linear(output, outDim, outDim, dropout = actDropout, batchNorm = batchNorm,
|
| 327 |
+
addBias = addBias, act = "NON", actLayer = False,
|
| 328 |
+
name = name + "_2", reuse = reuse)
|
| 329 |
+
|
| 330 |
+
if retVars:
|
| 331 |
+
return (output, (W, b))
|
| 332 |
+
|
| 333 |
+
return output
|
| 334 |
+
|
| 335 |
+
'''
|
| 336 |
+
Computes Multi-layer feed-forward network.
|
| 337 |
+
|
| 338 |
+
Args:
|
| 339 |
+
features: input features
|
| 340 |
+
dims: list with dimensions of network.
|
| 341 |
+
First dimension is of the inputs, final is of the outputs.
|
| 342 |
+
batchNorm: if not None, applies batchNorm
|
| 343 |
+
dropout: dropout value to apply for each layer
|
| 344 |
+
act: activation to apply between layers.
|
| 345 |
+
NON, TANH, SIGMOID, RELU, ELU
|
| 346 |
+
'''
|
| 347 |
+
# no activation after last layer
|
| 348 |
+
# batchNorm = {"decay": float, "train": Tensor}
|
| 349 |
+
def FCLayer(features, dims, batchNorm = None, dropout = 1.0, act = "RELU"):
|
| 350 |
+
layersNum = len(dims) - 1
|
| 351 |
+
|
| 352 |
+
for i in range(layersNum):
|
| 353 |
+
features = linear(features, dims[i], dims[i+1], name = "fc_%d" % i,
|
| 354 |
+
batchNorm = batchNorm, dropout = dropout)
|
| 355 |
+
# not the last layer
|
| 356 |
+
if i < layersNum - 1:
|
| 357 |
+
features = activations[act](features)
|
| 358 |
+
|
| 359 |
+
return features
|
| 360 |
+
|
| 361 |
+
###################################### cnns ######################################
|
| 362 |
+
|
| 363 |
+
'''
|
| 364 |
+
Computes convolution.
|
| 365 |
+
|
| 366 |
+
Args:
|
| 367 |
+
inp: input features
|
| 368 |
+
inDim: input dimension
|
| 369 |
+
outDim: output dimension
|
| 370 |
+
batchNorm: if not None, applies batchNorm on inputs
|
| 371 |
+
dropout: dropout value to apply on inputs
|
| 372 |
+
addBias: True to add bias
|
| 373 |
+
kernelSize: kernel size
|
| 374 |
+
stride: stride size
|
| 375 |
+
act: activation to apply on outputs
|
| 376 |
+
NON, TANH, SIGMOID, RELU, ELU
|
| 377 |
+
'''
|
| 378 |
+
# batchNorm = {"decay": float, "train": Tensor, "center": bool, "scale": bool}
|
| 379 |
+
# collections.namedtuple("batchNorm", ("decay", "train"))
|
| 380 |
+
def cnn(inp, inDim, outDim, batchNorm = None, dropout = 1.0, addBias = True,
|
| 381 |
+
kernelSize = None, stride = 1, act = "NON", name = "", reuse = None):
|
| 382 |
+
|
| 383 |
+
with tf.variable_scope("cnnLayer" + name, reuse = reuse):
|
| 384 |
+
|
| 385 |
+
if kernelSize is None:
|
| 386 |
+
kernelSize = config.stemKernelSize
|
| 387 |
+
kernelH = kernelW = kernelSize
|
| 388 |
+
|
| 389 |
+
kernel = getKernel((kernelH, kernelW, inDim, outDim))
|
| 390 |
+
b = getBias((outDim, ))
|
| 391 |
+
|
| 392 |
+
if batchNorm is not None:
|
| 393 |
+
inp = tf.contrib.layers.batch_norm(inp, decay = batchNorm["decay"], center = batchNorm["center"],
|
| 394 |
+
scale = batchNorm["scale"], is_training = batchNorm["train"], updates_collections = None)
|
| 395 |
+
|
| 396 |
+
inp = tf.nn.dropout(inp, dropout)
|
| 397 |
+
|
| 398 |
+
output = tf.nn.conv2d(inp, filter = kernel, strides = [1, stride, stride, 1], padding = "SAME")
|
| 399 |
+
|
| 400 |
+
if addBias:
|
| 401 |
+
output += b
|
| 402 |
+
|
| 403 |
+
output = activations[act](output)
|
| 404 |
+
|
| 405 |
+
return output
|
| 406 |
+
|
| 407 |
+
'''
|
| 408 |
+
Computes Multi-layer convolutional network.
|
| 409 |
+
|
| 410 |
+
Args:
|
| 411 |
+
features: input features
|
| 412 |
+
dims: list with dimensions of network.
|
| 413 |
+
First dimension is of the inputs. Final is of the outputs.
|
| 414 |
+
batchNorm: if not None, applies batchNorm
|
| 415 |
+
dropout: dropout value to apply for each layer
|
| 416 |
+
kernelSizes: list of kernel sizes for each layer. Default to config.stemKernelSize
|
| 417 |
+
strides: list of strides for each layer. Default to 1.
|
| 418 |
+
act: activation to apply between layers.
|
| 419 |
+
NON, TANH, SIGMOID, RELU, ELU
|
| 420 |
+
'''
|
| 421 |
+
# batchNorm = {"decay": float, "train": Tensor, "center": bool, "scale": bool}
|
| 422 |
+
# activation after last layer
|
| 423 |
+
def CNNLayer(features, dims, batchNorm = None, dropout = 1.0,
|
| 424 |
+
kernelSizes = None, strides = None, act = "RELU"):
|
| 425 |
+
|
| 426 |
+
layersNum = len(dims) - 1
|
| 427 |
+
|
| 428 |
+
if kernelSizes is None:
|
| 429 |
+
kernelSizes = [config.stemKernelSize for i in range(layersNum)]
|
| 430 |
+
|
| 431 |
+
if strides is None:
|
| 432 |
+
strides = [1 for i in range(layersNum)]
|
| 433 |
+
|
| 434 |
+
for i in range(layersNum):
|
| 435 |
+
features = cnn(features, dims[i], dims[i+1], name = "cnn_%d" % i, batchNorm = batchNorm,
|
| 436 |
+
dropout = dropout, kernelSize = kernelSizes[i], stride = strides[i], act = act)
|
| 437 |
+
|
| 438 |
+
return features
|
| 439 |
+
|
| 440 |
+
######################################## location ########################################
|
| 441 |
+
|
| 442 |
+
'''
|
| 443 |
+
Computes linear positional encoding for h x w grid.
|
| 444 |
+
If outDim positive, casts positions to that dimension.
|
| 445 |
+
'''
|
| 446 |
+
# ignores dim
|
| 447 |
+
# h,w can be tensor scalars
|
| 448 |
+
def locationL(h, w, dim, outDim = -1, addBias = True):
|
| 449 |
+
dim = 2
|
| 450 |
+
grid = tf.stack(tf.meshgrid(tf.linspace(-config.locationBias, config.locationBias, w),
|
| 451 |
+
tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
|
| 452 |
+
|
| 453 |
+
if outDim > 0:
|
| 454 |
+
grid = linear(grid, dim, outDim, addBias = addBias, name = "locationL")
|
| 455 |
+
dim = outDim
|
| 456 |
+
|
| 457 |
+
return grid, dim
|
| 458 |
+
|
| 459 |
+
'''
|
| 460 |
+
Computes sin/cos positional encoding for h x w x (4*dim).
|
| 461 |
+
If outDim positive, casts positions to that dimension.
|
| 462 |
+
Based on positional encoding presented in "Attention is all you need"
|
| 463 |
+
'''
|
| 464 |
+
# dim % 4 = 0
|
| 465 |
+
# h,w can be tensor scalars
|
| 466 |
+
def locationPE(h, w, dim, outDim = -1, addBias = True):
|
| 467 |
+
x = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, w)), axis = -1)
|
| 468 |
+
y = tf.expand_dims(tf.to_float(tf.linspace(-config.locationBias, config.locationBias, h)), axis = -1)
|
| 469 |
+
i = tf.expand_dims(tf.to_float(tf.range(dim)), axis = 0)
|
| 470 |
+
|
| 471 |
+
peSinX = tf.sin(x / (tf.pow(10000.0, i / dim)))
|
| 472 |
+
peCosX = tf.cos(x / (tf.pow(10000.0, i / dim)))
|
| 473 |
+
peSinY = tf.sin(y / (tf.pow(10000.0, i / dim)))
|
| 474 |
+
peCosY = tf.cos(y / (tf.pow(10000.0, i / dim)))
|
| 475 |
+
|
| 476 |
+
peSinX = tf.tile(tf.expand_dims(peSinX, axis = 0), [h, 1, 1])
|
| 477 |
+
peCosX = tf.tile(tf.expand_dims(peCosX, axis = 0), [h, 1, 1])
|
| 478 |
+
peSinY = tf.tile(tf.expand_dims(peSinY, axis = 1), [1, w, 1])
|
| 479 |
+
peCosY = tf.tile(tf.expand_dims(peCosY, axis = 1), [1, w, 1])
|
| 480 |
+
|
| 481 |
+
grid = tf.concat([peSinX, peCosX, peSinY, peCosY], axis = -1)
|
| 482 |
+
dim *= 4
|
| 483 |
+
|
| 484 |
+
if outDim > 0:
|
| 485 |
+
grid = linear(grid, dim, outDim, addBias = addBias, name = "locationPE")
|
| 486 |
+
dim = outDim
|
| 487 |
+
|
| 488 |
+
return grid, dim
|
| 489 |
+
|
| 490 |
+
locations = {
|
| 491 |
+
"L": locationL,
|
| 492 |
+
"PE": locationPE
|
| 493 |
+
}
|
| 494 |
+
|
| 495 |
+
'''
|
| 496 |
+
Adds positional encoding to features. May ease spatial reasoning.
|
| 497 |
+
(although not used in the default model).
|
| 498 |
+
|
| 499 |
+
Args:
|
| 500 |
+
features: features to add position encoding to.
|
| 501 |
+
[batchSize, h, w, c]
|
| 502 |
+
|
| 503 |
+
inDim: number of features' channels
|
| 504 |
+
lDim: dimension for positional encodings
|
| 505 |
+
outDim: if positive, cast enhanced features (with positions) to that dimension
|
| 506 |
+
h: features' height
|
| 507 |
+
w: features' width
|
| 508 |
+
locType: L for linear encoding, PE for cos/sin based positional encoding
|
| 509 |
+
mod: way to add positional encoding: concatenation (CNCT), addition (ADD),
|
| 510 |
+
multiplication (MUL), linear transformation (LIN).
|
| 511 |
+
'''
|
| 512 |
+
mods = ["CNCT", "ADD", "LIN", "MUL"]
|
| 513 |
+
# if outDim = -1, then will be set based on inDim, lDim
|
| 514 |
+
def addLocation(features, inDim, lDim, outDim = -1, h = None, w = None,
|
| 515 |
+
locType = "L", mod = "CNCT", name = "", reuse = None): # h,w not needed
|
| 516 |
+
|
| 517 |
+
with tf.variable_scope("addLocation" + name, reuse = reuse):
|
| 518 |
+
batchSize = tf.shape(features)[0]
|
| 519 |
+
if h is None:
|
| 520 |
+
h = tf.shape(features)[1]
|
| 521 |
+
if w is None:
|
| 522 |
+
w = tf.shape(features)[2]
|
| 523 |
+
dim = inDim
|
| 524 |
+
|
| 525 |
+
if mod == "LIN":
|
| 526 |
+
if outDim < 0:
|
| 527 |
+
outDim = dim
|
| 528 |
+
|
| 529 |
+
grid, _ = locations[locType](h, w, lDim, outDim = outDim, addBias = False)
|
| 530 |
+
features = linear(features, dim, outDim, name = "LIN")
|
| 531 |
+
features += grid
|
| 532 |
+
return features, outDim
|
| 533 |
+
|
| 534 |
+
if mod == "CNCT":
|
| 535 |
+
grid, lDim = locations[locType](h, w, lDim)
|
| 536 |
+
# grid = tf.zeros_like(features) + grid
|
| 537 |
+
grid = tf.tile(tf.expand_dims(grid, axis = 0), [batchSize, 1, 1, 1])
|
| 538 |
+
features = tf.concat([features, grid], axis = -1)
|
| 539 |
+
dim += lDim
|
| 540 |
+
|
| 541 |
+
elif mod == "ADD":
|
| 542 |
+
grid, _ = locations[locType](h, w, lDim, outDim = dim)
|
| 543 |
+
features += grid
|
| 544 |
+
|
| 545 |
+
elif mod == "MUL": # MUL
|
| 546 |
+
grid, _ = locations[locType](h, w, lDim, outDim = dim)
|
| 547 |
+
|
| 548 |
+
if outDim < 0:
|
| 549 |
+
outDim = dim
|
| 550 |
+
|
| 551 |
+
grid = tf.tile(tf.expand_dims(grid, axis = 0), [batchSize, 1, 1, 1])
|
| 552 |
+
features = tf.concat([features, grid, features * grid], axis = -1)
|
| 553 |
+
dim *= 3
|
| 554 |
+
|
| 555 |
+
if outDim > 0:
|
| 556 |
+
features = linear(features, dim, outDim)
|
| 557 |
+
dim = outDim
|
| 558 |
+
|
| 559 |
+
return features, dim
|
| 560 |
+
|
| 561 |
+
# config.locationAwareEnd
|
| 562 |
+
# H, W, _ = config.imageDims
|
| 563 |
+
# projDim = config.stemProjDim
|
| 564 |
+
# k = config.stemProjPooling
|
| 565 |
+
# projDim on inDim or on out
|
| 566 |
+
# inDim = tf.shape(features)[3]
|
| 567 |
+
|
| 568 |
+
'''
|
| 569 |
+
Linearize 2d image to linear vector.
|
| 570 |
+
|
| 571 |
+
Args:
|
| 572 |
+
features: batch of 2d images.
|
| 573 |
+
[batchSize, h, w, inDim]
|
| 574 |
+
|
| 575 |
+
h: image height
|
| 576 |
+
|
| 577 |
+
w: image width
|
| 578 |
+
|
| 579 |
+
inDim: number of channels
|
| 580 |
+
|
| 581 |
+
projDim: if not None, project image to that dimension before linearization
|
| 582 |
+
|
| 583 |
+
outDim: if not None, project image to that dimension after linearization
|
| 584 |
+
|
| 585 |
+
loc: if not None, add positional encoding:
|
| 586 |
+
locType: L for linear encoding, PE for cos/sin based positional encoding
|
| 587 |
+
mod: way to add positional encoding: concatenation (CNCT), addition (ADD),
|
| 588 |
+
multiplication (MUL), linear transformation (LIN).
|
| 589 |
+
pooling: number to pool image with before linearization.
|
| 590 |
+
|
| 591 |
+
Returns linearized image:
|
| 592 |
+
[batchSize, outDim] (or [batchSize, (h / pooling) * (w /pooling) * projDim] if outDim not supported)
|
| 593 |
+
'''
|
| 594 |
+
# loc = {"locType": str, "mod": str}
|
| 595 |
+
def linearizeFeatures(features, h, w, inDim, projDim = None, outDim = None,
|
| 596 |
+
loc = None, pooling = None):
|
| 597 |
+
|
| 598 |
+
if pooling is None:
|
| 599 |
+
pooling = config.imageLinPool
|
| 600 |
+
|
| 601 |
+
if loc is not None:
|
| 602 |
+
features = addLocation(features, inDim, lDim = inDim, outDim = inDim,
|
| 603 |
+
locType = loc["locType"], mod = loc["mod"])
|
| 604 |
+
|
| 605 |
+
if projDim is not None:
|
| 606 |
+
features = linear(features, dim, projDim)
|
| 607 |
+
features = relu(features)
|
| 608 |
+
dim = projDim
|
| 609 |
+
|
| 610 |
+
if pooling > 1:
|
| 611 |
+
poolingDims = [1, pooling, pooling, 1]
|
| 612 |
+
features = tf.nn.max_pool(features, ksize = poolingDims, strides = poolingDims,
|
| 613 |
+
padding = "SAME")
|
| 614 |
+
h /= pooling
|
| 615 |
+
w /= pooling
|
| 616 |
+
|
| 617 |
+
dim = h * w * dim
|
| 618 |
+
features = tf.reshape(features, (-1, dim))
|
| 619 |
+
|
| 620 |
+
if outDim is not None:
|
| 621 |
+
features = linear(features, dim, outDim)
|
| 622 |
+
dim = outDim
|
| 623 |
+
|
| 624 |
+
return features, dim
|
| 625 |
+
|
| 626 |
+
################################### multiplication ###################################
|
| 627 |
+
# specific dim / proj for x / y
|
| 628 |
+
'''
|
| 629 |
+
"Enhanced" hadamard product between x and y:
|
| 630 |
+
1. Supports optional projection of x, and y prior to multiplication.
|
| 631 |
+
2. Computes simple multiplication, or a parametrized one, using diagonal of complete matrix (bi-linear)
|
| 632 |
+
3. Optionally concatenate x or y or their projection to the multiplication result.
|
| 633 |
+
|
| 634 |
+
Support broadcasting
|
| 635 |
+
|
| 636 |
+
Args:
|
| 637 |
+
x: left-hand side argument
|
| 638 |
+
[batchSize, dim]
|
| 639 |
+
|
| 640 |
+
y: right-hand side argument
|
| 641 |
+
[batchSize, dim]
|
| 642 |
+
|
| 643 |
+
dim: input dimension of x and y
|
| 644 |
+
|
| 645 |
+
dropout: dropout value to apply on x and y
|
| 646 |
+
|
| 647 |
+
proj: if not None, project x and y:
|
| 648 |
+
dim: projection dimension
|
| 649 |
+
shared: use same projection for x and y
|
| 650 |
+
dropout: dropout to apply to x and y if projected
|
| 651 |
+
|
| 652 |
+
interMod: multiplication type:
|
| 653 |
+
"MUL": x * y
|
| 654 |
+
"DIAG": x * W * y for a learned diagonal parameter W
|
| 655 |
+
"BL": x' W y for a learned matrix W
|
| 656 |
+
|
| 657 |
+
concat: if not None, concatenate x or y or their projection.
|
| 658 |
+
|
| 659 |
+
mulBias: optional bias to stabilize multiplication (x * bias) (y * bias)
|
| 660 |
+
|
| 661 |
+
Returns the multiplication result
|
| 662 |
+
[batchSize, outDim] when outDim depends on the use of proj and cocnat arguments.
|
| 663 |
+
'''
|
| 664 |
+
# proj = {"dim": int, "shared": bool, "dropout": float} # "act": str, "actDropout": float
|
| 665 |
+
## interMod = ["direct", "scalarW", "bilinear"] # "additive"
|
| 666 |
+
# interMod = ["MUL", "DIAG", "BL", "ADD"]
|
| 667 |
+
# concat = {"x": bool, "y": bool, "proj": bool}
|
| 668 |
+
def mul(x, y, dim, dropout = 1.0, proj = None, interMod = "MUL", concat = None, mulBias = None,
|
| 669 |
+
extendY = True, name = "", reuse = None):
|
| 670 |
+
|
| 671 |
+
with tf.variable_scope("mul" + name, reuse = reuse):
|
| 672 |
+
origVals = {"x": x, "y": y, "dim": dim}
|
| 673 |
+
|
| 674 |
+
x = tf.nn.dropout(x, dropout)
|
| 675 |
+
y = tf.nn.dropout(y, dropout)
|
| 676 |
+
# projection
|
| 677 |
+
if proj is not None:
|
| 678 |
+
x = tf.nn.dropout(x, proj.get("dropout", 1.0))
|
| 679 |
+
y = tf.nn.dropout(y, proj.get("dropout", 1.0))
|
| 680 |
+
|
| 681 |
+
if proj["shared"]:
|
| 682 |
+
xName, xReuse = "proj", None
|
| 683 |
+
yName, yReuse = "proj", True
|
| 684 |
+
else:
|
| 685 |
+
xName, xReuse = "projX", None
|
| 686 |
+
yName, yReuse = "projY", None
|
| 687 |
+
|
| 688 |
+
x = linear(x, dim, proj["dim"], name = xName, reuse = xReuse)
|
| 689 |
+
y = linear(y, dim, proj["dim"], name = yName, reuse = yReuse)
|
| 690 |
+
dim = proj["dim"]
|
| 691 |
+
projVals = {"x": x, "y": y, "dim": dim}
|
| 692 |
+
proj["x"], proj["y"] = x, y
|
| 693 |
+
|
| 694 |
+
if extendY:
|
| 695 |
+
y = tf.expand_dims(y, axis = -2)
|
| 696 |
+
# broadcasting to have the same shape
|
| 697 |
+
y = tf.zeros_like(x) + y
|
| 698 |
+
|
| 699 |
+
# multiplication
|
| 700 |
+
if interMod == "MUL":
|
| 701 |
+
if mulBias is None:
|
| 702 |
+
mulBias = config.mulBias
|
| 703 |
+
output = (x + mulBias) * (y + mulBias)
|
| 704 |
+
elif interMod == "DIAG":
|
| 705 |
+
W = getWeight((dim, )) # change initialization?
|
| 706 |
+
b = getBias((dim, ))
|
| 707 |
+
activations = x * W * y + b
|
| 708 |
+
elif interMod == "BL":
|
| 709 |
+
W = getWeight((dim, dim))
|
| 710 |
+
b = getBias((dim, ))
|
| 711 |
+
output = multiply(x, W) * y + b
|
| 712 |
+
else: # "ADD"
|
| 713 |
+
output = tf.tanh(x + y)
|
| 714 |
+
# concatenation
|
| 715 |
+
if concat is not None:
|
| 716 |
+
concatVals = projVals if concat.get("proj", False) else origVals
|
| 717 |
+
if concat.get("x", False):
|
| 718 |
+
output = tf.concat([output, concatVals["x"]], axis = -1)
|
| 719 |
+
dim += concatVals["dim"]
|
| 720 |
+
|
| 721 |
+
if concat.get("y", False):
|
| 722 |
+
output = ops.concat(output, concatVals["y"], extendY = extendY)
|
| 723 |
+
dim += concatVals["dim"]
|
| 724 |
+
|
| 725 |
+
return output, dim
|
| 726 |
+
|
| 727 |
+
######################################## rnns ########################################
|
| 728 |
+
|
| 729 |
+
'''
|
| 730 |
+
Creates an RNN cell.
|
| 731 |
+
|
| 732 |
+
Args:
|
| 733 |
+
hdim: the hidden dimension of the RNN cell.
|
| 734 |
+
|
| 735 |
+
reuse: whether the cell should reuse parameters or create new ones.
|
| 736 |
+
|
| 737 |
+
cellType: the cell type
|
| 738 |
+
RNN, GRU, LSTM, MiGRU, MiLSTM, ProjLSTM
|
| 739 |
+
|
| 740 |
+
act: the cell activation
|
| 741 |
+
NON, TANH, SIGMOID, RELU, ELU
|
| 742 |
+
|
| 743 |
+
projDim: if ProjLSTM, the dimension for the states projection
|
| 744 |
+
|
| 745 |
+
Returns the cell.
|
| 746 |
+
'''
|
| 747 |
+
# tf.nn.rnn_cell.MultiRNNCell([cell(hDim, reuse = reuse) for _ in config.encNumLayers])
|
| 748 |
+
# note that config.enc params not general
|
| 749 |
+
def createCell(hDim, reuse, cellType = None, act = None, projDim = None):
|
| 750 |
+
if cellType is None:
|
| 751 |
+
cellType = config.encType
|
| 752 |
+
|
| 753 |
+
activation = activations.get(act, None)
|
| 754 |
+
|
| 755 |
+
if cellType == "ProjLSTM":
|
| 756 |
+
cell = tf.nn.rnn_cell.LSTMCell
|
| 757 |
+
if projDim is None:
|
| 758 |
+
projDim = config.cellDim
|
| 759 |
+
cell = cell(hDim, num_proj = projDim, reuse = reuse, activation = activation)
|
| 760 |
+
return cell
|
| 761 |
+
|
| 762 |
+
cells = {
|
| 763 |
+
"RNN": tf.nn.rnn_cell.BasicRNNCell,
|
| 764 |
+
"GRU": tf.nn.rnn_cell.GRUCell,
|
| 765 |
+
"LSTM": tf.nn.rnn_cell.BasicLSTMCell,
|
| 766 |
+
"MiGRU": MiGRUCell,
|
| 767 |
+
"MiLSTM": MiLSTMCell
|
| 768 |
+
}
|
| 769 |
+
|
| 770 |
+
cell = cells[cellType](hDim, reuse = reuse, activation = activation)
|
| 771 |
+
|
| 772 |
+
return cell
|
| 773 |
+
|
| 774 |
+
'''
|
| 775 |
+
Runs an forward RNN layer.
|
| 776 |
+
|
| 777 |
+
Args:
|
| 778 |
+
inSeq: the input sequence to run the RNN over.
|
| 779 |
+
[batchSize, sequenceLength, inDim]
|
| 780 |
+
|
| 781 |
+
seqL: the sequence matching lengths.
|
| 782 |
+
[batchSize, 1]
|
| 783 |
+
|
| 784 |
+
hDim: hidden dimension of the RNN.
|
| 785 |
+
|
| 786 |
+
cellType: the cell type
|
| 787 |
+
RNN, GRU, LSTM, MiGRU, MiLSTM, ProjLSTM
|
| 788 |
+
|
| 789 |
+
dropout: value for dropout over input sequence
|
| 790 |
+
|
| 791 |
+
varDp: if not None, state and input variational dropouts to apply.
|
| 792 |
+
dimension of input has to be supported (inputSize).
|
| 793 |
+
|
| 794 |
+
Returns the outputs sequence and final RNN state.
|
| 795 |
+
'''
|
| 796 |
+
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
|
| 797 |
+
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
|
| 798 |
+
def fwRNNLayer(inSeq, seqL, hDim, cellType = None, dropout = 1.0, varDp = None,
|
| 799 |
+
name = "", reuse = None): # proj = None
|
| 800 |
+
|
| 801 |
+
with tf.variable_scope("rnnLayer" + name, reuse = reuse):
|
| 802 |
+
batchSize = tf.shape(inSeq)[0]
|
| 803 |
+
|
| 804 |
+
cell = createCell(hDim, reuse, cellType) # passing reuse isn't mandatory
|
| 805 |
+
|
| 806 |
+
if varDp is not None:
|
| 807 |
+
cell = tf.contrib.rnn.DropoutWrapper(cell,
|
| 808 |
+
state_keep_prob = varDp["stateDp"],
|
| 809 |
+
input_keep_prob = varDp["inputDp"],
|
| 810 |
+
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
|
| 811 |
+
else:
|
| 812 |
+
inSeq = tf.nn.dropout(inSeq, dropout)
|
| 813 |
+
|
| 814 |
+
initialState = cell.zero_state(batchSize, tf.float32)
|
| 815 |
+
|
| 816 |
+
outSeq, lastState = tf.nn.dynamic_rnn(cell, inSeq,
|
| 817 |
+
sequence_length = seqL,
|
| 818 |
+
initial_state = initialState,
|
| 819 |
+
swap_memory = True)
|
| 820 |
+
|
| 821 |
+
if isinstance(lastState, tf.nn.rnn_cell.LSTMStateTuple):
|
| 822 |
+
lastState = lastState.h
|
| 823 |
+
|
| 824 |
+
# if proj is not None:
|
| 825 |
+
# if proj["output"]:
|
| 826 |
+
# outSeq = linear(outSeq, cell.output_size, proj["dim"], act = proj["act"],
|
| 827 |
+
# dropout = proj["dropout"], name = "projOutput")
|
| 828 |
+
|
| 829 |
+
# if proj["state"]:
|
| 830 |
+
# lastState = linear(lastState, cell.state_size, proj["dim"], act = proj["act"],
|
| 831 |
+
# dropout = proj["dropout"], name = "projState")
|
| 832 |
+
|
| 833 |
+
return outSeq, lastState
|
| 834 |
+
|
| 835 |
+
'''
|
| 836 |
+
Runs an bidirectional RNN layer.
|
| 837 |
+
|
| 838 |
+
Args:
|
| 839 |
+
inSeq: the input sequence to run the RNN over.
|
| 840 |
+
[batchSize, sequenceLength, inDim]
|
| 841 |
+
|
| 842 |
+
seqL: the sequence matching lengths.
|
| 843 |
+
[batchSize, 1]
|
| 844 |
+
|
| 845 |
+
hDim: hidden dimension of the RNN.
|
| 846 |
+
|
| 847 |
+
cellType: the cell type
|
| 848 |
+
RNN, GRU, LSTM, MiGRU, MiLSTM
|
| 849 |
+
|
| 850 |
+
dropout: value for dropout over input sequence
|
| 851 |
+
|
| 852 |
+
varDp: if not None, state and input variational dropouts to apply.
|
| 853 |
+
dimension of input has to be supported (inputSize).
|
| 854 |
+
|
| 855 |
+
Returns the outputs sequence and final RNN state.
|
| 856 |
+
'''
|
| 857 |
+
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
|
| 858 |
+
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
|
| 859 |
+
def biRNNLayer(inSeq, seqL, hDim, cellType = None, dropout = 1.0, varDp = None,
|
| 860 |
+
name = "", reuse = None): # proj = None,
|
| 861 |
+
|
| 862 |
+
with tf.variable_scope("birnnLayer" + name, reuse = reuse):
|
| 863 |
+
batchSize = tf.shape(inSeq)[0]
|
| 864 |
+
|
| 865 |
+
with tf.variable_scope("fw"):
|
| 866 |
+
cellFw = createCell(hDim, reuse, cellType)
|
| 867 |
+
with tf.variable_scope("bw"):
|
| 868 |
+
cellBw = createCell(hDim, reuse, cellType)
|
| 869 |
+
|
| 870 |
+
if varDp is not None:
|
| 871 |
+
cellFw = tf.contrib.rnn.DropoutWrapper(cellFw,
|
| 872 |
+
state_keep_prob = varDp["stateDp"],
|
| 873 |
+
input_keep_prob = varDp["inputDp"],
|
| 874 |
+
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
|
| 875 |
+
|
| 876 |
+
cellBw = tf.contrib.rnn.DropoutWrapper(cellBw,
|
| 877 |
+
state_keep_prob = varDp["stateDp"],
|
| 878 |
+
input_keep_prob = varDp["inputDp"],
|
| 879 |
+
variational_recurrent = True, input_size = varDp["inputSize"], dtype = tf.float32)
|
| 880 |
+
else:
|
| 881 |
+
inSeq = tf.nn.dropout(inSeq, dropout)
|
| 882 |
+
|
| 883 |
+
initialStateFw = cellFw.zero_state(batchSize, tf.float32)
|
| 884 |
+
initialStateBw = cellBw.zero_state(batchSize, tf.float32)
|
| 885 |
+
|
| 886 |
+
(outSeqFw, outSeqBw), (lastStateFw, lastStateBw) = tf.nn.bidirectional_dynamic_rnn(
|
| 887 |
+
cellFw, cellBw, inSeq,
|
| 888 |
+
sequence_length = seqL,
|
| 889 |
+
initial_state_fw = initialStateFw,
|
| 890 |
+
initial_state_bw = initialStateBw,
|
| 891 |
+
swap_memory = True)
|
| 892 |
+
|
| 893 |
+
if isinstance(lastStateFw, tf.nn.rnn_cell.LSTMStateTuple):
|
| 894 |
+
lastStateFw = lastStateFw.h # take c?
|
| 895 |
+
lastStateBw = lastStateBw.h
|
| 896 |
+
|
| 897 |
+
outSeq = tf.concat([outSeqFw, outSeqBw], axis = -1)
|
| 898 |
+
lastState = tf.concat([lastStateFw, lastStateBw], axis = -1)
|
| 899 |
+
|
| 900 |
+
# if proj is not None:
|
| 901 |
+
# if proj["output"]:
|
| 902 |
+
# outSeq = linear(outSeq, cellFw.output_size + cellFw.output_size,
|
| 903 |
+
# proj["dim"], act = proj["act"], dropout = proj["dropout"],
|
| 904 |
+
# name = "projOutput")
|
| 905 |
+
|
| 906 |
+
# if proj["state"]:
|
| 907 |
+
# lastState = linear(lastState, cellFw.state_size + cellFw.state_size,
|
| 908 |
+
# proj["dim"], act = proj["act"], dropout = proj["dropout"],
|
| 909 |
+
# name = "projState")
|
| 910 |
+
|
| 911 |
+
return outSeq, lastState
|
| 912 |
+
|
| 913 |
+
# int(hDim / 2) for biRNN?
|
| 914 |
+
'''
|
| 915 |
+
Runs an RNN layer by calling biRNN or fwRNN.
|
| 916 |
+
|
| 917 |
+
Args:
|
| 918 |
+
inSeq: the input sequence to run the RNN over.
|
| 919 |
+
[batchSize, sequenceLength, inDim]
|
| 920 |
+
|
| 921 |
+
seqL: the sequence matching lengths.
|
| 922 |
+
[batchSize, 1]
|
| 923 |
+
|
| 924 |
+
hDim: hidden dimension of the RNN.
|
| 925 |
+
|
| 926 |
+
bi: true to run bidirectional rnn.
|
| 927 |
+
|
| 928 |
+
cellType: the cell type
|
| 929 |
+
RNN, GRU, LSTM, MiGRU, MiLSTM
|
| 930 |
+
|
| 931 |
+
dropout: value for dropout over input sequence
|
| 932 |
+
|
| 933 |
+
varDp: if not None, state and input variational dropouts to apply.
|
| 934 |
+
dimension of input has to be supported (inputSize).
|
| 935 |
+
|
| 936 |
+
Returns the outputs sequence and final RNN state.
|
| 937 |
+
'''
|
| 938 |
+
# proj = {"output": bool, "state": bool, "dim": int, "dropout": float, "act": str}
|
| 939 |
+
# varDp = {"stateDp": float, "inputDp": float, "inputSize": int}
|
| 940 |
+
def RNNLayer(inSeq, seqL, hDim, bi = None, cellType = None, dropout = 1.0, varDp = None,
|
| 941 |
+
name = "", reuse = None): # proj = None
|
| 942 |
+
|
| 943 |
+
with tf.variable_scope("rnnLayer" + name, reuse = reuse):
|
| 944 |
+
if bi is None:
|
| 945 |
+
bi = config.encBi
|
| 946 |
+
|
| 947 |
+
rnn = biRNNLayer if bi else fwRNNLayer
|
| 948 |
+
|
| 949 |
+
if bi:
|
| 950 |
+
hDim = int(hDim / 2)
|
| 951 |
+
|
| 952 |
+
return rnn(inSeq, seqL, hDim, cellType = cellType, dropout = dropout, varDp = varDp) # , proj = proj
|
| 953 |
+
|
| 954 |
+
# tf counterpart?
|
| 955 |
+
# hDim = config.moduleDim
|
| 956 |
+
def multigridRNNLayer(featrues, h, w, dim, name = "", reuse = None):
|
| 957 |
+
with tf.variable_scope("multigridRNNLayer" + name, reuse = reuse):
|
| 958 |
+
featrues = linear(featrues, dim, dim / 2, name = "i")
|
| 959 |
+
|
| 960 |
+
output0 = gridRNNLayer(featrues, h, w, dim, right = True, down = True, name = "rd")
|
| 961 |
+
output1 = gridRNNLayer(featrues, h, w, dim, right = True, down = False, name = "r")
|
| 962 |
+
output2 = gridRNNLayer(featrues, h, w, dim, right = False, down = True, name = "d")
|
| 963 |
+
output3 = gridRNNLayer(featrues, h, w, dim, right = False, down = False, name = "NON")
|
| 964 |
+
|
| 965 |
+
output = tf.concat([output0, output1, output2, output3], axis = -1)
|
| 966 |
+
output = linear(output, 2 * dim, dim, name = "o")
|
| 967 |
+
|
| 968 |
+
return outputs
|
| 969 |
+
|
| 970 |
+
# h,w should be constants
|
| 971 |
+
def gridRNNLayer(features, h, w, dim, right, down, name = "", reuse = None):
|
| 972 |
+
with tf.variable_scope("gridRNNLayer" + name):
|
| 973 |
+
batchSize = tf.shape(features)[0]
|
| 974 |
+
|
| 975 |
+
cell = createCell(dim, reuse = reuse, cellType = config.stemGridRnnMod,
|
| 976 |
+
act = config.stemGridAct)
|
| 977 |
+
|
| 978 |
+
initialState = cell.zero_state(batchSize, tf.float32)
|
| 979 |
+
|
| 980 |
+
inputs = [tf.unstack(row, w, axis = 1) for row in tf.unstack(features, h, axis = 1)]
|
| 981 |
+
states = [[None for _ in range(w)] for _ in range(h)]
|
| 982 |
+
|
| 983 |
+
iAxis = range(h) if down else (range(h)[::-1])
|
| 984 |
+
jAxis = range(w) if right else (range(w)[::-1])
|
| 985 |
+
|
| 986 |
+
iPrev = -1 if down else 1
|
| 987 |
+
jPrev = -1 if right else 1
|
| 988 |
+
|
| 989 |
+
prevState = lambda i,j: states[i][j] if (i >= 0 and i < h and j >= 0 and j < w) else initialState
|
| 990 |
+
|
| 991 |
+
for i in iAxis:
|
| 992 |
+
for j in jAxis:
|
| 993 |
+
prevs = tf.concat((prevState(i + iPrev, j), prevState(i, j + jPrev)), axis = -1)
|
| 994 |
+
curr = inputs[i][j]
|
| 995 |
+
_, states[i][j] = cell(prevs, curr)
|
| 996 |
+
|
| 997 |
+
outputs = [tf.stack(row, axis = 1) for row in states]
|
| 998 |
+
outputs = tf.stack(outputs, axis = 1)
|
| 999 |
+
|
| 1000 |
+
return outputs
|
| 1001 |
+
|
| 1002 |
+
# tf seq2seq?
|
| 1003 |
+
# def projRNNLayer(inSeq, seqL, hDim, labels, labelsNum, labelsDim, labelsEmb, name = "", reuse = None):
|
| 1004 |
+
# with tf.variable_scope("projRNNLayer" + name):
|
| 1005 |
+
# batchSize = tf.shape(features)[0]
|
| 1006 |
+
|
| 1007 |
+
# cell = createCell(hDim, reuse = reuse)
|
| 1008 |
+
|
| 1009 |
+
# projCell = ProjWrapper(cell, labelsNum, labelsDim, labelsEmb, # config.wrdEmbDim
|
| 1010 |
+
# feedPrev = True, dropout = 1.0, config,
|
| 1011 |
+
# temperature = 1.0, clevr_sample = False, reuse)
|
| 1012 |
+
|
| 1013 |
+
# initialState = projCell.zero_state(batchSize, tf.float32)
|
| 1014 |
+
|
| 1015 |
+
# if config.soft:
|
| 1016 |
+
# inSeq = inSeq
|
| 1017 |
+
|
| 1018 |
+
# # outputs, _ = tf.nn.static_rnn(projCell, inputs,
|
| 1019 |
+
# # sequence_length = seqL,
|
| 1020 |
+
# # initial_state = initialState)
|
| 1021 |
+
|
| 1022 |
+
# inSeq = tf.unstack(inSeq, axis = 1)
|
| 1023 |
+
# state = initialState
|
| 1024 |
+
# logitsList = []
|
| 1025 |
+
# chosenList = []
|
| 1026 |
+
|
| 1027 |
+
# for inp in inSeq:
|
| 1028 |
+
# (logits, chosen), state = projCell(inp, state)
|
| 1029 |
+
# logitsList.append(logits)
|
| 1030 |
+
# chosenList.append(chosen)
|
| 1031 |
+
# projCell.reuse = True
|
| 1032 |
+
|
| 1033 |
+
# logitsOut = tf.stack(logitsList, axis = 1)
|
| 1034 |
+
# chosenOut = tf.stack(chosenList, axis = 1)
|
| 1035 |
+
# outputs = (logitsOut, chosenOut)
|
| 1036 |
+
# else:
|
| 1037 |
+
# labels = tf.to_float(labels)
|
| 1038 |
+
# labels = tf.concat([tf.zeros((batchSize, 1)), labels], axis = 1)[:, :-1] # ,newaxis
|
| 1039 |
+
# inSeq = tf.concat([inSeq, tf.expand_dims(labels, axis = -1)], axis = -1)
|
| 1040 |
+
|
| 1041 |
+
# outputs, _ = tf.nn.dynamic_rnn(projCell, inSeq,
|
| 1042 |
+
# sequence_length = seqL,
|
| 1043 |
+
# initial_state = initialState,
|
| 1044 |
+
# swap_memory = True)
|
| 1045 |
+
|
| 1046 |
+
# return outputs #, labelsEmb
|
| 1047 |
+
|
| 1048 |
+
############################### variational dropout ###############################
|
| 1049 |
+
|
| 1050 |
+
'''
|
| 1051 |
+
Generates a variational dropout mask for a given shape and a dropout
|
| 1052 |
+
probability value.
|
| 1053 |
+
'''
|
| 1054 |
+
def generateVarDpMask(shape, keepProb):
|
| 1055 |
+
randomTensor = tf.to_float(keepProb)
|
| 1056 |
+
randomTensor += tf.random_uniform(shape, minval = 0, maxval = 1)
|
| 1057 |
+
binaryTensor = tf.floor(randomTensor)
|
| 1058 |
+
mask = tf.to_float(binaryTensor)
|
| 1059 |
+
return mask
|
| 1060 |
+
|
| 1061 |
+
'''
|
| 1062 |
+
Applies the a variational dropout over an input, given dropout mask
|
| 1063 |
+
and a dropout probability value.
|
| 1064 |
+
'''
|
| 1065 |
+
def applyVarDpMask(inp, mask, keepProb):
|
| 1066 |
+
ret = (tf.div(inp, tf.to_float(keepProb))) * mask
|
| 1067 |
+
return ret
|