Spaces:
Runtime error
Runtime error
Upload main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import division
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
from extract_feature import build_model, run_image, get_img_feat
|
| 5 |
+
|
| 6 |
+
# warnings.filterwarnings("ignore", category=FutureWarning)
|
| 7 |
+
# warnings.filterwarnings("ignore", message="size changed")
|
| 8 |
+
warnings.filterwarnings("ignore")
|
| 9 |
+
|
| 10 |
+
import sys
|
| 11 |
+
import os
|
| 12 |
+
import time
|
| 13 |
+
import math
|
| 14 |
+
import random
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
import Queue as queue
|
| 18 |
+
except ImportError:
|
| 19 |
+
import queue
|
| 20 |
+
import threading
|
| 21 |
+
import h5py
|
| 22 |
+
import json
|
| 23 |
+
import numpy as np
|
| 24 |
+
import tensorflow as tf
|
| 25 |
+
from termcolor import colored, cprint
|
| 26 |
+
|
| 27 |
+
from config import config, loadDatasetConfig, parseArgs
|
| 28 |
+
from preprocess import Preprocesser, bold, bcolored, writeline, writelist
|
| 29 |
+
from model import MACnet
|
| 30 |
+
from collections import defaultdict
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
############################################# loggers #############################################
|
| 34 |
+
|
| 35 |
+
# Writes log header to file
|
| 36 |
+
def logInit():
|
| 37 |
+
with open(config.logFile(), "a+") as outFile:
|
| 38 |
+
writeline(outFile, config.expName)
|
| 39 |
+
headers = ["epoch", "trainAcc", "valAcc", "trainLoss", "valLoss"]
|
| 40 |
+
if config.evalTrain:
|
| 41 |
+
headers += ["evalTrainAcc", "evalTrainLoss"]
|
| 42 |
+
if config.extra:
|
| 43 |
+
if config.evalTrain:
|
| 44 |
+
headers += ["thAcc", "thLoss"]
|
| 45 |
+
headers += ["vhAcc", "vhLoss"]
|
| 46 |
+
headers += ["time", "lr"]
|
| 47 |
+
|
| 48 |
+
writelist(outFile, headers)
|
| 49 |
+
# lr assumed to be last
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Writes log record to file
|
| 53 |
+
def logRecord(epoch, epochTime, lr, trainRes, evalRes, extraEvalRes):
|
| 54 |
+
with open(config.logFile(), "a+") as outFile:
|
| 55 |
+
record = [epoch, trainRes["acc"], evalRes["val"]["acc"], trainRes["loss"], evalRes["val"]["loss"]]
|
| 56 |
+
if config.evalTrain:
|
| 57 |
+
record += [evalRes["evalTrain"]["acc"], evalRes["evalTrain"]["loss"]]
|
| 58 |
+
if config.extra:
|
| 59 |
+
if config.evalTrain:
|
| 60 |
+
record += [extraEvalRes["evalTrain"]["acc"], extraEvalRes["evalTrain"]["loss"]]
|
| 61 |
+
record += [extraEvalRes["val"]["acc"], extraEvalRes["val"]["loss"]]
|
| 62 |
+
record += [epochTime, lr]
|
| 63 |
+
|
| 64 |
+
writelist(outFile, record)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# Gets last logged epoch and learning rate
|
| 68 |
+
def lastLoggedEpoch():
|
| 69 |
+
with open(config.logFile(), "r") as inFile:
|
| 70 |
+
lastLine = list(inFile)[-1].split(",")
|
| 71 |
+
epoch = int(lastLine[0])
|
| 72 |
+
lr = float(lastLine[-1])
|
| 73 |
+
return epoch, lr
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
################################## printing, output and analysis ##################################
|
| 77 |
+
|
| 78 |
+
# Analysis by type
|
| 79 |
+
analysisQuestionLims = [(0, 18), (19, float("inf"))]
|
| 80 |
+
analysisProgramLims = [(0, 12), (13, float("inf"))]
|
| 81 |
+
|
| 82 |
+
toArity = lambda instance: instance["programSeq"][-1].split("_", 1)[0]
|
| 83 |
+
toType = lambda instance: instance["programSeq"][-1].split("_", 1)[1]
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def fieldLenIsInRange(field):
|
| 87 |
+
return lambda instance, group: \
|
| 88 |
+
(len(instance[field]) >= group[0] and
|
| 89 |
+
len(instance[field]) <= group[1])
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Groups instances based on a key
|
| 93 |
+
def grouperKey(toKey):
|
| 94 |
+
def grouper(instances):
|
| 95 |
+
res = defaultdict(list)
|
| 96 |
+
for instance in instances:
|
| 97 |
+
res[toKey(instance)].append(instance)
|
| 98 |
+
return res
|
| 99 |
+
|
| 100 |
+
return grouper
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Groups instances according to their match to condition
|
| 104 |
+
def grouperCond(groups, isIn):
|
| 105 |
+
def grouper(instances):
|
| 106 |
+
res = {}
|
| 107 |
+
for group in groups:
|
| 108 |
+
res[group] = (instance for instance in instances if isIn(instance, group))
|
| 109 |
+
return res
|
| 110 |
+
|
| 111 |
+
return grouper
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
groupers = {
|
| 115 |
+
"questionLength": grouperCond(analysisQuestionLims, fieldLenIsInRange("questionSeq")),
|
| 116 |
+
"programLength": grouperCond(analysisProgramLims, fieldLenIsInRange("programSeq")),
|
| 117 |
+
"arity": grouperKey(toArity),
|
| 118 |
+
"type": grouperKey(toType)
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# Computes average
|
| 123 |
+
def avg(instances, field):
|
| 124 |
+
if len(instances) == 0:
|
| 125 |
+
return 0.0
|
| 126 |
+
return sum(instances[field]) / len(instances)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Prints analysis of questions loss and accuracy by their group
|
| 130 |
+
def printAnalysis(res):
|
| 131 |
+
if config.analysisType != "":
|
| 132 |
+
print("Analysis by {type}".format(type=config.analysisType))
|
| 133 |
+
groups = groupers[config.analysisType](res["preds"])
|
| 134 |
+
for key in groups:
|
| 135 |
+
instances = groups[key]
|
| 136 |
+
avgLoss = avg(instances, "loss")
|
| 137 |
+
avgAcc = avg(instances, "acc")
|
| 138 |
+
num = len(instances)
|
| 139 |
+
print("Group {key}: Loss: {loss}, Acc: {acc}, Num: {num}".format(key, avgLoss, avgAcc, num))
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
# Print results for a tier
|
| 143 |
+
def printTierResults(tierName, res, color):
|
| 144 |
+
if res is None:
|
| 145 |
+
return
|
| 146 |
+
|
| 147 |
+
print("{tierName} Loss: {loss}, {tierName} accuracy: {acc}".format(tierName=tierName,
|
| 148 |
+
loss=bcolored(res["loss"], color),
|
| 149 |
+
acc=bcolored(res["acc"], color)))
|
| 150 |
+
|
| 151 |
+
printAnalysis(res)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# Prints dataset results (for several tiers)
|
| 155 |
+
def printDatasetResults(trainRes, evalRes):
|
| 156 |
+
printTierResults("Training", trainRes, "magenta")
|
| 157 |
+
printTierResults("Training EMA", evalRes["evalTrain"], "red")
|
| 158 |
+
printTierResults("Validation", evalRes["val"], "cyan")
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# Writes predictions for several tiers
|
| 162 |
+
def writePreds(preprocessor, evalRes):
|
| 163 |
+
preprocessor.writePreds(evalRes, "_")
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
############################################# session #############################################
|
| 167 |
+
# Initializes TF session. Sets GPU memory configuration.
|
| 168 |
+
def setSession():
|
| 169 |
+
sessionConfig = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
|
| 170 |
+
if config.allowGrowth:
|
| 171 |
+
sessionConfig.gpu_options.allow_growth = True
|
| 172 |
+
if config.maxMemory < 1.0:
|
| 173 |
+
sessionConfig.gpu_options.per_process_gpu_memory_fraction = config.maxMemory
|
| 174 |
+
return sessionConfig
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
############################################## savers #############################################
|
| 178 |
+
# Initializes savers (standard, optional exponential-moving-average and optional for subset of variables)
|
| 179 |
+
def setSavers(model):
|
| 180 |
+
saver = tf.train.Saver(max_to_keep=config.weightsToKeep)
|
| 181 |
+
|
| 182 |
+
subsetSaver = None
|
| 183 |
+
if config.saveSubset:
|
| 184 |
+
isRelevant = lambda var: any(s in var.name for s in config.varSubset)
|
| 185 |
+
relevantVars = [var for var in tf.global_variables() if isRelevant(var)]
|
| 186 |
+
subsetSaver = tf.train.Saver(relevantVars, max_to_keep=config.weightsToKeep, allow_empty=True)
|
| 187 |
+
|
| 188 |
+
emaSaver = None
|
| 189 |
+
if config.useEMA:
|
| 190 |
+
emaSaver = tf.train.Saver(model.emaDict, max_to_keep=config.weightsToKeep)
|
| 191 |
+
|
| 192 |
+
return {
|
| 193 |
+
"saver": saver,
|
| 194 |
+
"subsetSaver": subsetSaver,
|
| 195 |
+
"emaSaver": emaSaver
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
################################### restore / initialize weights ##################################
|
| 200 |
+
# Restores weights of specified / last epoch if on restore mod.
|
| 201 |
+
# Otherwise, initializes weights.
|
| 202 |
+
def loadWeights(sess, saver, init):
|
| 203 |
+
if config.restoreEpoch > 0 or config.restore:
|
| 204 |
+
# restore last epoch only if restoreEpoch isn't set
|
| 205 |
+
if config.restoreEpoch == 0:
|
| 206 |
+
# restore last logged epoch
|
| 207 |
+
config.restoreEpoch, config.lr = lastLoggedEpoch()
|
| 208 |
+
print(bcolored("Restoring epoch {} and lr {}".format(config.restoreEpoch, config.lr), "cyan"))
|
| 209 |
+
print(bcolored("Restoring weights", "blue"))
|
| 210 |
+
print(config.weightsFile(config.restoreEpoch))
|
| 211 |
+
saver.restore(sess, config.weightsFile(config.restoreEpoch))
|
| 212 |
+
epoch = config.restoreEpoch
|
| 213 |
+
else:
|
| 214 |
+
print(bcolored("Initializing weights", "blue"))
|
| 215 |
+
sess.run(init)
|
| 216 |
+
logInit()
|
| 217 |
+
epoch = 0
|
| 218 |
+
|
| 219 |
+
return epoch
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
###################################### training / evaluation ######################################
|
| 223 |
+
# Chooses data to train on (main / extra) data.
|
| 224 |
+
def chooseTrainingData(data):
|
| 225 |
+
trainingData = data["main"]["train"]
|
| 226 |
+
alterData = None
|
| 227 |
+
|
| 228 |
+
if config.extra:
|
| 229 |
+
if config.trainExtra:
|
| 230 |
+
if config.extraVal:
|
| 231 |
+
trainingData = data["extra"]["val"]
|
| 232 |
+
else:
|
| 233 |
+
trainingData = data["extra"]["train"]
|
| 234 |
+
if config.alterExtra:
|
| 235 |
+
alterData = data["extra"]["train"]
|
| 236 |
+
|
| 237 |
+
return trainingData, alterData
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
#### evaluation
|
| 241 |
+
# Runs evaluation on train / val / test datasets.
|
| 242 |
+
def runEvaluation(sess, model, data, epoch, evalTrain=True, evalTest=False, getAtt=None):
|
| 243 |
+
if getAtt is None:
|
| 244 |
+
getAtt = config.getAtt
|
| 245 |
+
res = {"evalTrain": None, "val": None, "test": None}
|
| 246 |
+
|
| 247 |
+
if data is not None:
|
| 248 |
+
if evalTrain and config.evalTrain:
|
| 249 |
+
res["evalTrain"] = runEpoch(sess, model, data["evalTrain"], train=False, epoch=epoch, getAtt=getAtt)
|
| 250 |
+
|
| 251 |
+
res["val"] = runEpoch(sess, model, data["val"], train=False, epoch=epoch, getAtt=getAtt)
|
| 252 |
+
|
| 253 |
+
if evalTest or config.test:
|
| 254 |
+
res["test"] = runEpoch(sess, model, data["test"], train=False, epoch=epoch, getAtt=getAtt)
|
| 255 |
+
|
| 256 |
+
return res
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
## training conditions (comparing current epoch result to prior ones)
|
| 260 |
+
def improveEnough(curr, prior, lr):
|
| 261 |
+
prevRes = prior["prev"]["res"]
|
| 262 |
+
currRes = curr["res"]
|
| 263 |
+
|
| 264 |
+
if prevRes is None:
|
| 265 |
+
return True
|
| 266 |
+
|
| 267 |
+
prevTrainLoss = prevRes["train"]["loss"]
|
| 268 |
+
currTrainLoss = currRes["train"]["loss"]
|
| 269 |
+
lossDiff = prevTrainLoss - currTrainLoss
|
| 270 |
+
|
| 271 |
+
notImprove = ((lossDiff < 0.015 and prevTrainLoss < 0.5 and lr > 0.00002) or \
|
| 272 |
+
(lossDiff < 0.008 and prevTrainLoss < 0.15 and lr > 0.00001) or \
|
| 273 |
+
(lossDiff < 0.003 and prevTrainLoss < 0.10 and lr > 0.000005))
|
| 274 |
+
# (prevTrainLoss < 0.2 and config.lr > 0.000015)
|
| 275 |
+
|
| 276 |
+
return not notImprove
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
def better(currRes, bestRes):
|
| 280 |
+
return currRes["val"]["acc"] > bestRes["val"]["acc"]
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
############################################## data ###############################################
|
| 284 |
+
#### instances and batching
|
| 285 |
+
# Trims sequences based on their max length.
|
| 286 |
+
def trim2DVectors(vectors, vectorsLengths):
|
| 287 |
+
maxLength = np.max(vectorsLengths)
|
| 288 |
+
return vectors[:, :maxLength]
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
# Trims batch based on question length.
|
| 292 |
+
def trimData(data):
|
| 293 |
+
data["questions"] = trim2DVectors(data["questions"], data["questionLengths"])
|
| 294 |
+
return data
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# Gets batch / bucket size.
|
| 298 |
+
def getLength(data):
|
| 299 |
+
return len(data["instances"])
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
# Selects the data entries that match the indices.
|
| 303 |
+
def selectIndices(data, indices):
|
| 304 |
+
def select(field, indices):
|
| 305 |
+
if type(field) is np.ndarray:
|
| 306 |
+
return field[indices]
|
| 307 |
+
if type(field) is list:
|
| 308 |
+
return [field[i] for i in indices]
|
| 309 |
+
else:
|
| 310 |
+
return field
|
| 311 |
+
|
| 312 |
+
selected = {k: select(d, indices) for k, d in data.items()}
|
| 313 |
+
return selected
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
# Batches data into a a list of batches of batchSize.
|
| 317 |
+
# Shuffles the data by default.
|
| 318 |
+
def getBatches(data, batchSize=None, shuffle=True):
|
| 319 |
+
batches = []
|
| 320 |
+
|
| 321 |
+
dataLen = getLength(data)
|
| 322 |
+
if batchSize is None or batchSize > dataLen:
|
| 323 |
+
batchSize = dataLen
|
| 324 |
+
|
| 325 |
+
indices = np.arange(dataLen)
|
| 326 |
+
if shuffle:
|
| 327 |
+
np.random.shuffle(indices)
|
| 328 |
+
|
| 329 |
+
for batchStart in range(0, dataLen, batchSize):
|
| 330 |
+
batchIndices = indices[batchStart: batchStart + batchSize]
|
| 331 |
+
# if len(batchIndices) == batchSize?
|
| 332 |
+
if len(batchIndices) >= config.gpusNum:
|
| 333 |
+
batch = selectIndices(data, batchIndices)
|
| 334 |
+
batches.append(batch)
|
| 335 |
+
# batchesIndices.append((data, batchIndices))
|
| 336 |
+
|
| 337 |
+
return batches
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
#### image batches
|
| 341 |
+
# Opens image files.
|
| 342 |
+
def openImageFiles(images):
|
| 343 |
+
images["imagesFile"] = h5py.File(images["imagesFilename"], "r")
|
| 344 |
+
images["imagesIds"] = None
|
| 345 |
+
if config.dataset == "NLVR":
|
| 346 |
+
with open(images["imageIdsFilename"], "r") as imageIdsFile:
|
| 347 |
+
images["imagesIds"] = json.load(imageIdsFile)
|
| 348 |
+
|
| 349 |
+
# Closes image files.
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def closeImageFiles(images):
|
| 353 |
+
images["imagesFile"].close()
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
# Loads an images from file for a given data batch.
|
| 357 |
+
def loadImageBatch(images, batch):
|
| 358 |
+
imagesFile = images["imagesFile"]
|
| 359 |
+
id2idx = images["imagesIds"]
|
| 360 |
+
toIndex = lambda imageId: imageId
|
| 361 |
+
if id2idx is not None:
|
| 362 |
+
toIndex = lambda imageId: id2idx[imageId]
|
| 363 |
+
imageBatch = np.stack([imagesFile["features"][toIndex(imageId)] for imageId in batch["imageIds"]], axis=0)
|
| 364 |
+
|
| 365 |
+
return {"images": imageBatch, "imageIds": batch["imageIds"]}
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# Loads images for several num batches in the batches list from start index.
|
| 369 |
+
def loadImageBatches(images, batches, start, num):
|
| 370 |
+
batches = batches[start: start + num]
|
| 371 |
+
return [loadImageBatch(images, batch) for batch in batches]
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
#### data alternation
|
| 375 |
+
# Alternates main training batches with extra data.
|
| 376 |
+
def alternateData(batches, alterData, dataLen):
|
| 377 |
+
alterData = alterData["data"][0] # data isn't bucketed for altered data
|
| 378 |
+
|
| 379 |
+
# computes number of repetitions
|
| 380 |
+
needed = math.ceil(len(batches) / config.alterNum)
|
| 381 |
+
print(bold("Extra batches needed: %d") % needed)
|
| 382 |
+
perData = math.ceil(getLength(alterData) / config.batchSize)
|
| 383 |
+
print(bold("Batches per extra data: %d") % perData)
|
| 384 |
+
repetitions = math.ceil(needed / perData)
|
| 385 |
+
print(bold("reps: %d") % repetitions)
|
| 386 |
+
|
| 387 |
+
# make alternate batches
|
| 388 |
+
alterBatches = []
|
| 389 |
+
for _ in range(repetitions):
|
| 390 |
+
repBatches = getBatches(alterData, batchSize=config.batchSize)
|
| 391 |
+
random.shuffle(repBatches)
|
| 392 |
+
alterBatches += repBatches
|
| 393 |
+
print(bold("Batches num: %d") + len(alterBatches))
|
| 394 |
+
|
| 395 |
+
# alternate data with extra data
|
| 396 |
+
curr = len(batches) - 1
|
| 397 |
+
for alterBatch in alterBatches:
|
| 398 |
+
if curr < 0:
|
| 399 |
+
# print(colored("too many" + str(curr) + " " + str(len(batches)),"red"))
|
| 400 |
+
break
|
| 401 |
+
batches.insert(curr, alterBatch)
|
| 402 |
+
dataLen += getLength(alterBatch)
|
| 403 |
+
curr -= config.alterNum
|
| 404 |
+
|
| 405 |
+
return batches, dataLen
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
############################################ threading ############################################
|
| 409 |
+
|
| 410 |
+
imagesQueue = queue.Queue(maxsize=20) # config.tasksNum
|
| 411 |
+
inQueue = queue.Queue(maxsize=1)
|
| 412 |
+
outQueue = queue.Queue(maxsize=1)
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
# Runs a worker thread(s) to load images while training .
|
| 416 |
+
class StoppableThread(threading.Thread):
|
| 417 |
+
# Thread class with a stop() method. The thread itself has to check
|
| 418 |
+
# regularly for the stopped() condition.
|
| 419 |
+
|
| 420 |
+
def __init__(self, images, batches): # i
|
| 421 |
+
super(StoppableThread, self).__init__()
|
| 422 |
+
# self.i = i
|
| 423 |
+
self.images = images
|
| 424 |
+
self.batches = batches
|
| 425 |
+
self._stop_event = threading.Event()
|
| 426 |
+
|
| 427 |
+
# def __init__(self, args):
|
| 428 |
+
# super(StoppableThread, self).__init__(args = args)
|
| 429 |
+
# self._stop_event = threading.Event()
|
| 430 |
+
|
| 431 |
+
# def __init__(self, target, args):
|
| 432 |
+
# super(StoppableThread, self).__init__(target = target, args = args)
|
| 433 |
+
# self._stop_event = threading.Event()
|
| 434 |
+
|
| 435 |
+
def stop(self):
|
| 436 |
+
self._stop_event.set()
|
| 437 |
+
|
| 438 |
+
def stopped(self):
|
| 439 |
+
return self._stop_event.is_set()
|
| 440 |
+
|
| 441 |
+
def run(self):
|
| 442 |
+
while not self.stopped():
|
| 443 |
+
try:
|
| 444 |
+
batchNum = inQueue.get(timeout=60)
|
| 445 |
+
nextItem = loadImageBatches(self.images, self.batches, batchNum, int(config.taskSize / 2))
|
| 446 |
+
outQueue.put(nextItem)
|
| 447 |
+
# inQueue.task_done()
|
| 448 |
+
except:
|
| 449 |
+
pass
|
| 450 |
+
# print("worker %d done", self.i)
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def loaderRun(images, batches):
|
| 454 |
+
batchNum = 0
|
| 455 |
+
|
| 456 |
+
# if config.workers == 2:
|
| 457 |
+
# worker = StoppableThread(images, batches) # i,
|
| 458 |
+
# worker.daemon = True
|
| 459 |
+
# worker.start()
|
| 460 |
+
|
| 461 |
+
# while batchNum < len(batches):
|
| 462 |
+
# inQueue.put(batchNum + int(config.taskSize / 2))
|
| 463 |
+
# nextItem1 = loadImageBatches(images, batches, batchNum, int(config.taskSize / 2))
|
| 464 |
+
# nextItem2 = outQueue.get()
|
| 465 |
+
|
| 466 |
+
# nextItem = nextItem1 + nextItem2
|
| 467 |
+
# assert len(nextItem) == min(config.taskSize, len(batches) - batchNum)
|
| 468 |
+
# batchNum += config.taskSize
|
| 469 |
+
|
| 470 |
+
# imagesQueue.put(nextItem)
|
| 471 |
+
|
| 472 |
+
# worker.stop()
|
| 473 |
+
# else:
|
| 474 |
+
while batchNum < len(batches):
|
| 475 |
+
nextItem = loadImageBatches(images, batches, batchNum, config.taskSize)
|
| 476 |
+
assert len(nextItem) == min(config.taskSize, len(batches) - batchNum)
|
| 477 |
+
batchNum += config.taskSize
|
| 478 |
+
imagesQueue.put(nextItem)
|
| 479 |
+
|
| 480 |
+
# print("manager loader done")
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
########################################## stats tracking #########################################
|
| 484 |
+
# Computes exponential moving average.
|
| 485 |
+
def emaAvg(avg, value):
|
| 486 |
+
if avg is None:
|
| 487 |
+
return value
|
| 488 |
+
emaRate = 0.98
|
| 489 |
+
return avg * emaRate + value * (1 - emaRate)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
# Initializes training statistics.
|
| 493 |
+
def initStats():
|
| 494 |
+
return {
|
| 495 |
+
"totalBatches": 0,
|
| 496 |
+
"totalData": 0,
|
| 497 |
+
"totalLoss": 0.0,
|
| 498 |
+
"totalCorrect": 0,
|
| 499 |
+
"loss": 0.0,
|
| 500 |
+
"acc": 0.0,
|
| 501 |
+
"emaLoss": None,
|
| 502 |
+
"emaAcc": None,
|
| 503 |
+
}
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
# Updates statistics with training results of a batch
|
| 507 |
+
def updateStats(stats, res, batch):
|
| 508 |
+
stats["totalBatches"] += 1
|
| 509 |
+
stats["totalData"] += getLength(batch)
|
| 510 |
+
|
| 511 |
+
stats["totalLoss"] += res["loss"]
|
| 512 |
+
stats["totalCorrect"] += res["correctNum"]
|
| 513 |
+
|
| 514 |
+
stats["loss"] = stats["totalLoss"] / stats["totalBatches"]
|
| 515 |
+
stats["acc"] = stats["totalCorrect"] / stats["totalData"]
|
| 516 |
+
|
| 517 |
+
stats["emaLoss"] = emaAvg(stats["emaLoss"], res["loss"])
|
| 518 |
+
stats["emaAcc"] = emaAvg(stats["emaAcc"], res["acc"])
|
| 519 |
+
|
| 520 |
+
return stats
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
# auto-encoder ae = {:2.4f} autoEncLoss,
|
| 524 |
+
# Translates training statistics into a string to print
|
| 525 |
+
def statsToStr(stats, res, epoch, batchNum, dataLen, startTime):
|
| 526 |
+
formatStr = "\reb {epoch},{batchNum} ({dataProcessed} / {dataLen:5d}), " + \
|
| 527 |
+
"t = {time} ({loadTime:2.2f}+{trainTime:2.2f}), " + \
|
| 528 |
+
"lr {lr}, l = {loss}, a = {acc}, avL = {avgLoss}, " + \
|
| 529 |
+
"avA = {avgAcc}, g = {gradNorm:2.4f}, " + \
|
| 530 |
+
"emL = {emaLoss:2.4f}, emA = {emaAcc:2.4f}; " + \
|
| 531 |
+
"{expname}" # {machine}/{gpu}"
|
| 532 |
+
|
| 533 |
+
s_epoch = bcolored("{:2d}".format(epoch), "green")
|
| 534 |
+
s_batchNum = "{:3d}".format(batchNum)
|
| 535 |
+
s_dataProcessed = bcolored("{:5d}".format(stats["totalData"]), "green")
|
| 536 |
+
s_dataLen = dataLen
|
| 537 |
+
s_time = bcolored("{:2.2f}".format(time.time() - startTime), "green")
|
| 538 |
+
s_loadTime = res["readTime"]
|
| 539 |
+
s_trainTime = res["trainTime"]
|
| 540 |
+
s_lr = bold(config.lr)
|
| 541 |
+
s_loss = bcolored("{:2.4f}".format(res["loss"]), "blue")
|
| 542 |
+
s_acc = bcolored("{:2.4f}".format(res["acc"]), "blue")
|
| 543 |
+
s_avgLoss = bcolored("{:2.4f}".format(stats["loss"]), "blue")
|
| 544 |
+
s_avgAcc = bcolored("{:2.4f}".format(stats["acc"]), "red")
|
| 545 |
+
s_gradNorm = res["gradNorm"]
|
| 546 |
+
s_emaLoss = stats["emaLoss"]
|
| 547 |
+
s_emaAcc = stats["emaAcc"]
|
| 548 |
+
s_expname = config.expName
|
| 549 |
+
# s_machine = bcolored(config.dataPath[9:11],"green")
|
| 550 |
+
# s_gpu = bcolored(config.gpus,"green")
|
| 551 |
+
|
| 552 |
+
return formatStr.format(epoch=s_epoch, batchNum=s_batchNum, dataProcessed=s_dataProcessed,
|
| 553 |
+
dataLen=s_dataLen, time=s_time, loadTime=s_loadTime,
|
| 554 |
+
trainTime=s_trainTime, lr=s_lr, loss=s_loss, acc=s_acc,
|
| 555 |
+
avgLoss=s_avgLoss, avgAcc=s_avgAcc, gradNorm=s_gradNorm,
|
| 556 |
+
emaLoss=s_emaLoss, emaAcc=s_emaAcc, expname=s_expname)
|
| 557 |
+
# machine = s_machine, gpu = s_gpu)
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
# collectRuntimeStats, writer = None,
|
| 561 |
+
'''
|
| 562 |
+
Runs an epoch with model and session over the data.
|
| 563 |
+
1. Batches the data and optionally mix it with the extra alterData.
|
| 564 |
+
2. Start worker threads to load images in parallel to training.
|
| 565 |
+
3. Runs model for each batch, and gets results (e.g. loss, accuracy).
|
| 566 |
+
4. Updates and prints statistics based on batch results.
|
| 567 |
+
5. Once in a while (every config.saveEvery), save weights.
|
| 568 |
+
|
| 569 |
+
Args:
|
| 570 |
+
sess: TF session to run with.
|
| 571 |
+
|
| 572 |
+
model: model to process data. Has runBatch method that process a given batch.
|
| 573 |
+
(See model.py for further details).
|
| 574 |
+
|
| 575 |
+
data: data to use for training/evaluation.
|
| 576 |
+
|
| 577 |
+
epoch: epoch number.
|
| 578 |
+
|
| 579 |
+
saver: TF saver to save weights
|
| 580 |
+
|
| 581 |
+
calle: a method to call every number of iterations (config.calleEvery)
|
| 582 |
+
|
| 583 |
+
alterData: extra data to mix with main data while training.
|
| 584 |
+
|
| 585 |
+
getAtt: True to return model attentions.
|
| 586 |
+
'''
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
def main(question, image):
|
| 590 |
+
with open(config.configFile(), "a+") as outFile:
|
| 591 |
+
json.dump(vars(config), outFile)
|
| 592 |
+
|
| 593 |
+
# set gpus
|
| 594 |
+
if config.gpus != "":
|
| 595 |
+
config.gpusNum = len(config.gpus.split(","))
|
| 596 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
|
| 597 |
+
|
| 598 |
+
tf.logging.set_verbosity(tf.logging.ERROR)
|
| 599 |
+
|
| 600 |
+
# process data
|
| 601 |
+
print(bold("Preprocess data..."))
|
| 602 |
+
start = time.time()
|
| 603 |
+
preprocessor = Preprocesser()
|
| 604 |
+
cnn_model = build_model()
|
| 605 |
+
imageData = get_img_feat(cnn_model, image)
|
| 606 |
+
qData, embeddings, answerDict = preprocessor.preprocessData(question)
|
| 607 |
+
data = {'data': qData, 'image': imageData}
|
| 608 |
+
print("took {} seconds".format(bcolored("{:.2f}".format(time.time() - start), "blue")))
|
| 609 |
+
|
| 610 |
+
# build model
|
| 611 |
+
print(bold("Building model..."))
|
| 612 |
+
start = time.time()
|
| 613 |
+
model = MACnet(embeddings, answerDict)
|
| 614 |
+
print("took {} seconds".format(bcolored("{:.2f}".format(time.time() - start), "blue")))
|
| 615 |
+
|
| 616 |
+
# initializer
|
| 617 |
+
init = tf.global_variables_initializer()
|
| 618 |
+
|
| 619 |
+
# savers
|
| 620 |
+
savers = setSavers(model)
|
| 621 |
+
saver, emaSaver = savers["saver"], savers["emaSaver"]
|
| 622 |
+
|
| 623 |
+
# sessionConfig
|
| 624 |
+
sessionConfig = setSession()
|
| 625 |
+
|
| 626 |
+
with tf.Session(config=sessionConfig) as sess:
|
| 627 |
+
|
| 628 |
+
# ensure no more ops are added after model is built
|
| 629 |
+
sess.graph.finalize()
|
| 630 |
+
|
| 631 |
+
# restore / initialize weights, initialize epoch variable
|
| 632 |
+
epoch = loadWeights(sess, saver, init)
|
| 633 |
+
print(epoch)
|
| 634 |
+
start = time.time()
|
| 635 |
+
if epoch > 0:
|
| 636 |
+
if config.useEMA:
|
| 637 |
+
emaSaver.restore(sess, config.weightsFile(epoch))
|
| 638 |
+
else:
|
| 639 |
+
saver.restore(sess, config.weightsFile(epoch))
|
| 640 |
+
|
| 641 |
+
evalRes = model.runBatch(sess, data['data'], data['image'], False)
|
| 642 |
+
|
| 643 |
+
print("took {:.2f} seconds".format(time.time() - start))
|
| 644 |
+
|
| 645 |
+
print(evalRes)
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
if __name__ == '__main__':
|
| 649 |
+
parseArgs()
|
| 650 |
+
loadDatasetConfig[config.dataset]()
|
| 651 |
+
question = 'How many text objects are located at the bottom side of table?'
|
| 652 |
+
imagePath = './mac-layoutLM-sample/PDF_val_64.png'
|
| 653 |
+
main(question, imagePath)
|