Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| class FLoSP(nn.Module): | |
| def __init__(self, scene_size, dataset, project_scale): | |
| super().__init__() | |
| self.scene_size = scene_size | |
| self.dataset = dataset | |
| self.project_scale = project_scale | |
| def forward(self, x2d, projected_pix, fov_mask): | |
| c, h, w = x2d.shape | |
| src = x2d.view(c, -1) | |
| zeros_vec = torch.zeros(c, 1).type_as(src) | |
| src = torch.cat([src, zeros_vec], 1) | |
| pix_x, pix_y = projected_pix[:, 0], projected_pix[:, 1] | |
| img_indices = pix_y * w + pix_x | |
| img_indices[~fov_mask] = h * w | |
| img_indices = img_indices.expand(c, -1).long() # c, HWD | |
| src_feature = torch.gather(src, 1, img_indices) | |
| if self.dataset == "NYU": | |
| x3d = src_feature.reshape( | |
| c, | |
| self.scene_size[0] // self.project_scale, | |
| self.scene_size[2] // self.project_scale, | |
| self.scene_size[1] // self.project_scale, | |
| ) | |
| x3d = x3d.permute(0, 1, 3, 2) | |
| elif self.dataset == "kitti": | |
| x3d = src_feature.reshape( | |
| c, | |
| self.scene_size[0] // self.project_scale, | |
| self.scene_size[1] // self.project_scale, | |
| self.scene_size[2] // self.project_scale, | |
| ) | |
| return x3d | |