Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import fusion | |
| import pandas as pd | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| def read_calib(calib_path): | |
| """ | |
| Modify from https://github.com/utiasSTARS/pykitti/blob/d3e1bb81676e831886726cc5ed79ce1f049aef2c/pykitti/utils.py#L68 | |
| :param calib_path: Path to a calibration text file. | |
| :return: dict with calibration matrices. | |
| """ | |
| calib_all = {} | |
| with open(calib_path, "r") as f: | |
| for line in f.readlines(): | |
| if line == "\n": | |
| break | |
| key, value = line.split(":", 1) | |
| calib_all[key] = np.array([float(x) for x in value.split()]) | |
| # reshape matrices | |
| calib_out = {} | |
| # 3x4 projection matrix for left camera | |
| calib_out["P2"] = calib_all["P2"].reshape(3, 4) | |
| calib_out["Tr"] = np.identity(4) # 4x4 matrix | |
| calib_out["Tr"][:3, :4] = calib_all["Tr"].reshape(3, 4) | |
| return calib_out | |
| def vox2pix(cam_E, cam_k, | |
| vox_origin, voxel_size, | |
| img_W, img_H, | |
| scene_size): | |
| """ | |
| compute the 2D projection of voxels centroids | |
| Parameters: | |
| ---------- | |
| cam_E: 4x4 | |
| =camera pose in case of NYUv2 dataset | |
| =Transformation from camera to lidar coordinate in case of SemKITTI | |
| cam_k: 3x3 | |
| camera intrinsics | |
| vox_origin: (3,) | |
| world(NYU)/lidar(SemKITTI) cooridnates of the voxel at index (0, 0, 0) | |
| img_W: int | |
| image width | |
| img_H: int | |
| image height | |
| scene_size: (3,) | |
| scene size in meter: (51.2, 51.2, 6.4) for SemKITTI and (4.8, 4.8, 2.88) for NYUv2 | |
| Returns | |
| ------- | |
| projected_pix: (N, 2) | |
| Projected 2D positions of voxels | |
| fov_mask: (N,) | |
| Voxels mask indice voxels inside image's FOV | |
| pix_z: (N,) | |
| Voxels'distance to the sensor in meter | |
| """ | |
| # Compute the x, y, z bounding of the scene in meter | |
| vol_bnds = np.zeros((3,2)) | |
| vol_bnds[:,0] = vox_origin | |
| vol_bnds[:,1] = vox_origin + np.array(scene_size) | |
| # Compute the voxels centroids in lidar cooridnates | |
| vol_dim = np.ceil((vol_bnds[:,1]- vol_bnds[:,0])/ voxel_size).copy(order='C').astype(int) | |
| xv, yv, zv = np.meshgrid( | |
| range(vol_dim[0]), | |
| range(vol_dim[1]), | |
| range(vol_dim[2]), | |
| indexing='ij' | |
| ) | |
| vox_coords = np.concatenate([ | |
| xv.reshape(1,-1), | |
| yv.reshape(1,-1), | |
| zv.reshape(1,-1) | |
| ], axis=0).astype(int).T | |
| # Project voxels'centroid from lidar coordinates to camera coordinates | |
| cam_pts = fusion.TSDFVolume.vox2world(vox_origin, vox_coords, voxel_size) | |
| cam_pts = fusion.rigid_transform(cam_pts, cam_E) | |
| # Project camera coordinates to pixel positions | |
| projected_pix = fusion.TSDFVolume.cam2pix(cam_pts, cam_k) | |
| pix_x, pix_y = projected_pix[:, 0], projected_pix[:, 1] | |
| # Eliminate pixels outside view frustum | |
| pix_z = cam_pts[:, 2] | |
| fov_mask = np.logical_and(pix_x >= 0, | |
| np.logical_and(pix_x < img_W, | |
| np.logical_and(pix_y >= 0, | |
| np.logical_and(pix_y < img_H, | |
| pix_z > 0)))) | |
| return torch.from_numpy(projected_pix), torch.from_numpy(fov_mask), torch.from_numpy(pix_z) | |
| def get_grid_coords(dims, resolution): | |
| """ | |
| :param dims: the dimensions of the grid [x, y, z] (i.e. [256, 256, 32]) | |
| :return coords_grid: is the center coords of voxels in the grid | |
| """ | |
| g_xx = np.arange(0, dims[0] + 1) | |
| g_yy = np.arange(0, dims[1] + 1) | |
| sensor_pose = 10 | |
| g_zz = np.arange(0, dims[2] + 1) | |
| # Obtaining the grid with coords... | |
| xx, yy, zz = np.meshgrid(g_xx[:-1], g_yy[:-1], g_zz[:-1]) | |
| coords_grid = np.array([xx.flatten(), yy.flatten(), zz.flatten()]).T | |
| coords_grid = coords_grid.astype(np.float) | |
| coords_grid = (coords_grid * resolution) + resolution / 2 | |
| temp = np.copy(coords_grid) | |
| temp[:, 0] = coords_grid[:, 1] | |
| temp[:, 1] = coords_grid[:, 0] | |
| coords_grid = np.copy(temp) | |
| return coords_grid | |
| def get_projections(img_W, img_H): | |
| scale_3ds = [1, 2] | |
| data = {} | |
| for scale_3d in scale_3ds: | |
| scene_size = (51.2, 51.2, 6.4) | |
| vox_origin = np.array([0, -25.6, -2]) | |
| voxel_size = 0.2 | |
| calib = read_calib("calib.txt") | |
| cam_k = calib["P2"][:3, :3] | |
| T_velo_2_cam = calib["Tr"] | |
| # compute the 3D-2D mapping | |
| projected_pix, fov_mask, pix_z = vox2pix( | |
| T_velo_2_cam, | |
| cam_k, | |
| vox_origin, | |
| voxel_size * scale_3d, | |
| img_W, | |
| img_H, | |
| scene_size, | |
| ) | |
| data["projected_pix_{}".format(scale_3d)] = projected_pix | |
| data["pix_z_{}".format(scale_3d)] = pix_z | |
| data["fov_mask_{}".format(scale_3d)] = fov_mask | |
| return data | |
| def majority_pooling(grid, k_size=2): | |
| result = np.zeros( | |
| (grid.shape[0] // k_size, grid.shape[1] // k_size, grid.shape[2] // k_size) | |
| ) | |
| for xx in range(0, int(np.floor(grid.shape[0] / k_size))): | |
| for yy in range(0, int(np.floor(grid.shape[1] / k_size))): | |
| for zz in range(0, int(np.floor(grid.shape[2] / k_size))): | |
| sub_m = grid[ | |
| (xx * k_size) : (xx * k_size) + k_size, | |
| (yy * k_size) : (yy * k_size) + k_size, | |
| (zz * k_size) : (zz * k_size) + k_size, | |
| ] | |
| unique, counts = np.unique(sub_m, return_counts=True) | |
| if True in ((unique != 0) & (unique != 255)): | |
| # Remove counts with 0 and 255 | |
| counts = counts[((unique != 0) & (unique != 255))] | |
| unique = unique[((unique != 0) & (unique != 255))] | |
| else: | |
| if True in (unique == 0): | |
| counts = counts[(unique != 255)] | |
| unique = unique[(unique != 255)] | |
| value = unique[np.argmax(counts)] | |
| result[xx, yy, zz] = value | |
| return result | |
| def draw( | |
| voxels, | |
| # T_velo_2_cam, | |
| # vox_origin, | |
| fov_mask, | |
| # img_size, | |
| # f, | |
| voxel_size=0.2, | |
| # d=7, # 7m - determine the size of the mesh representing the camera | |
| ): | |
| fov_mask = fov_mask.reshape(-1) | |
| # Compute the voxels coordinates | |
| grid_coords = get_grid_coords( | |
| [voxels.shape[0], voxels.shape[1], voxels.shape[2]], voxel_size | |
| ) | |
| # Attach the predicted class to every voxel | |
| grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T | |
| # Get the voxels inside FOV | |
| fov_grid_coords = grid_coords[fov_mask, :] | |
| # Get the voxels outside FOV | |
| outfov_grid_coords = grid_coords[~fov_mask, :] | |
| # Remove empty and unknown voxels | |
| fov_voxels = fov_grid_coords[ | |
| (fov_grid_coords[:, 3] > 0) & (fov_grid_coords[:, 3] < 255), : | |
| ] | |
| # print(np.unique(fov_voxels[:, 3], return_counts=True)) | |
| outfov_voxels = outfov_grid_coords[ | |
| (outfov_grid_coords[:, 3] > 0) & (outfov_grid_coords[:, 3] < 255), : | |
| ] | |
| # figure = mlab.figure(size=(1400, 1400), bgcolor=(1, 1, 1)) | |
| colors = np.array( | |
| [ | |
| [0,0,0], | |
| [100, 150, 245], | |
| [100, 230, 245], | |
| [30, 60, 150], | |
| [80, 30, 180], | |
| [100, 80, 250], | |
| [255, 30, 30], | |
| [255, 40, 200], | |
| [150, 30, 90], | |
| [255, 0, 255], | |
| [255, 150, 255], | |
| [75, 0, 75], | |
| [175, 0, 75], | |
| [255, 200, 0], | |
| [255, 120, 50], | |
| [0, 175, 0], | |
| [135, 60, 0], | |
| [150, 240, 80], | |
| [255, 240, 150], | |
| [255, 0, 0], | |
| ] | |
| ).astype(np.uint8) | |
| pts_colors = [f'rgb({colors[int(i)][0]}, {colors[int(i)][1]}, {colors[int(i)][2]})' for i in fov_voxels[:, 3]] | |
| out_fov_colors = [f'rgb({colors[int(i)][0]//3*2}, {colors[int(i)][1]//3*2}, {colors[int(i)][2]//3*2})' for i in outfov_voxels[:, 3]] | |
| pts_colors = pts_colors + out_fov_colors | |
| fov_voxels = np.concatenate([fov_voxels, outfov_voxels], axis=0) | |
| x = fov_voxels[:, 0].flatten() | |
| y = fov_voxels[:, 1].flatten() | |
| z = fov_voxels[:, 2].flatten() | |
| # label = fov_voxels[:, 3].flatten() | |
| fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z,mode='markers', | |
| marker=dict( | |
| size=2, | |
| color=pts_colors, # set color to an array/list of desired values | |
| # colorscale='Viridis', # choose a colorscale | |
| opacity=1.0, | |
| symbol='square' | |
| ))]) | |
| fig.update_layout( | |
| scene = dict( | |
| aspectmode='data', | |
| xaxis = dict( | |
| backgroundcolor="rgb(255, 255, 255)", | |
| gridcolor="black", | |
| showbackground=True, | |
| zerolinecolor="black", | |
| nticks=4, | |
| visible=False, | |
| range=[-1,55],), | |
| yaxis = dict( | |
| backgroundcolor="rgb(255, 255, 255)", | |
| gridcolor="black", | |
| showbackground=True, | |
| zerolinecolor="black", | |
| visible=False, | |
| nticks=4, range=[-1,55],), | |
| zaxis = dict( | |
| backgroundcolor="rgb(255, 255, 255)", | |
| gridcolor="black", | |
| showbackground=True, | |
| zerolinecolor="black", | |
| visible=False, | |
| nticks=4, range=[-1,7],), | |
| bgcolor="black", | |
| ), | |
| ) | |
| # fig = px.scatter_3d( | |
| # fov_voxels, | |
| # x=fov_voxels[:, 0], y="y", z="z", color="label") | |
| # Draw occupied inside FOV voxels | |
| # plt_plot_fov = mlab.points3d( | |
| # fov_voxels[:, 0], | |
| # fov_voxels[:, 1], | |
| # fov_voxels[:, 2], | |
| # fov_voxels[:, 3], | |
| # colormap="viridis", | |
| # scale_factor=voxel_size - 0.05 * voxel_size, | |
| # mode="cube", | |
| # opacity=1.0, | |
| # vmin=1, | |
| # vmax=19, | |
| # ) | |
| # # Draw occupied outside FOV voxels | |
| # plt_plot_outfov = mlab.points3d( | |
| # outfov_voxels[:, 0], | |
| # outfov_voxels[:, 1], | |
| # outfov_voxels[:, 2], | |
| # outfov_voxels[:, 3], | |
| # colormap="viridis", | |
| # scale_factor=voxel_size - 0.05 * voxel_size, | |
| # mode="cube", | |
| # opacity=1.0, | |
| # vmin=1, | |
| # vmax=19, | |
| # ) | |
| # plt_plot_fov.glyph.scale_mode = "scale_by_vector" | |
| # plt_plot_outfov.glyph.scale_mode = "scale_by_vector" | |
| # plt_plot_fov.module_manager.scalar_lut_manager.lut.table = colors | |
| # outfov_colors = colors | |
| # outfov_colors[:, :3] = outfov_colors[:, :3] // 3 * 2 | |
| # plt_plot_outfov.module_manager.scalar_lut_manager.lut.table = outfov_colors | |
| # mlab.show() | |
| return fig |