Spaces:
Running
Running
| from __future__ import annotations | |
| import argparse | |
| import os | |
| import sys | |
| from typing import Callable, Union | |
| import dlib | |
| import huggingface_hub | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| import torch.nn as nn | |
| import torchvision.transforms as T | |
| if os.environ.get('SYSTEM') == 'spaces': | |
| os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py") | |
| os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py") | |
| sys.path.insert(0, 'DualStyleGAN') | |
| from model.dualstylegan import DualStyleGAN | |
| from model.encoder.align_all_parallel import align_face | |
| from model.encoder.psp import pSp | |
| HF_TOKEN = os.environ['HF_TOKEN'] | |
| MODEL_REPO = 'hysts/DualStyleGAN' | |
| class Model: | |
| def __init__(self, device: Union[torch.device, str]): | |
| self.device = torch.device(device) | |
| self.landmark_model = self._create_dlib_landmark_model() | |
| self.encoder = self._load_encoder() | |
| self.transform = self._create_transform() | |
| self.style_types = [ | |
| 'cartoon', | |
| 'caricature', | |
| 'anime', | |
| 'arcane', | |
| 'comic', | |
| 'pixar', | |
| 'slamdunk', | |
| ] | |
| self.generator_dict = { | |
| style_type: self._load_generator(style_type) | |
| for style_type in self.style_types | |
| } | |
| self.exstyle_dict = { | |
| style_type: self._load_exstylecode(style_type) | |
| for style_type in self.style_types | |
| } | |
| def _create_dlib_landmark_model(): | |
| path = huggingface_hub.hf_hub_download( | |
| 'hysts/dlib_face_landmark_model', | |
| 'shape_predictor_68_face_landmarks.dat', | |
| use_auth_token=HF_TOKEN) | |
| return dlib.shape_predictor(path) | |
| def _load_encoder(self) -> nn.Module: | |
| ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
| 'models/encoder.pt', | |
| use_auth_token=HF_TOKEN) | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| opts = ckpt['opts'] | |
| opts['device'] = self.device.type | |
| opts['checkpoint_path'] = ckpt_path | |
| opts = argparse.Namespace(**opts) | |
| model = pSp(opts) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def _create_transform() -> Callable: | |
| transform = T.Compose([ | |
| T.Resize(256), | |
| T.CenterCrop(256), | |
| T.ToTensor(), | |
| T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
| ]) | |
| return transform | |
| def _load_generator(self, style_type: str) -> nn.Module: | |
| model = DualStyleGAN(1024, 512, 8, 2, res_index=6) | |
| ckpt_path = huggingface_hub.hf_hub_download( | |
| MODEL_REPO, | |
| f'models/{style_type}/generator.pt', | |
| use_auth_token=HF_TOKEN) | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| model.load_state_dict(ckpt['g_ema']) | |
| model.to(self.device) | |
| model.eval() | |
| return model | |
| def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]: | |
| if style_type in ['cartoon', 'caricature', 'anime']: | |
| filename = 'refined_exstyle_code.npy' | |
| else: | |
| filename = 'exstyle_code.npy' | |
| path = huggingface_hub.hf_hub_download( | |
| MODEL_REPO, | |
| f'models/{style_type}/{filename}', | |
| use_auth_token=HF_TOKEN) | |
| exstyles = np.load(path, allow_pickle=True).item() | |
| return exstyles | |
| def detect_and_align_face(self, image) -> np.ndarray: | |
| image = align_face(filepath=image.name, predictor=self.landmark_model) | |
| return image | |
| def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
| return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
| def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
| tensor = self.denormalize(tensor) | |
| return tensor.cpu().numpy().transpose(1, 2, 0) | |
| def reconstruct_face(self, | |
| image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]: | |
| image = PIL.Image.fromarray(image) | |
| input_data = self.transform(image).unsqueeze(0).to(self.device) | |
| img_rec, instyle = self.encoder(input_data, | |
| randomize_noise=False, | |
| return_latents=True, | |
| z_plus_latent=True, | |
| return_z_plus_latent=True, | |
| resize=False) | |
| img_rec = torch.clamp(img_rec.detach(), -1, 1) | |
| img_rec = self.postprocess(img_rec[0]) | |
| return img_rec, instyle | |
| def generate(self, style_type: str, style_id: int, structure_weight: float, | |
| color_weight: float, structure_only: bool, | |
| instyle: torch.Tensor) -> np.ndarray: | |
| generator = self.generator_dict[style_type] | |
| exstyles = self.exstyle_dict[style_type] | |
| style_id = int(style_id) | |
| stylename = list(exstyles.keys())[style_id] | |
| latent = torch.tensor(exstyles[stylename]).to(self.device) | |
| if structure_only: | |
| latent[0, 7:18] = instyle[0, 7:18] | |
| exstyle = generator.generator.style( | |
| latent.reshape(latent.shape[0] * latent.shape[1], | |
| latent.shape[2])).reshape(latent.shape) | |
| img_gen, _ = generator([instyle], | |
| exstyle, | |
| z_plus_latent=True, | |
| truncation=0.7, | |
| truncation_latent=0, | |
| use_res=True, | |
| interp_weights=[structure_weight] * 7 + | |
| [color_weight] * 11) | |
| img_gen = torch.clamp(img_gen.detach(), -1, 1) | |
| img_gen = self.postprocess(img_gen[0]) | |
| return img_gen | |