Spaces:
Runtime error
Runtime error
update model weight
Browse files
app.py
CHANGED
|
@@ -50,11 +50,15 @@ from torch.utils.data import DataLoader
|
|
| 50 |
from pathlib import Path
|
| 51 |
from torch.utils.data import Dataset
|
| 52 |
import datetime
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
device = 'cpu'
|
| 56 |
dtype = torch.float32
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
generator.eval()
|
| 59 |
generator.to(device, dtype)
|
| 60 |
params = {'batch_size': 1,
|
|
@@ -158,14 +162,14 @@ with demo:
|
|
| 158 |
The video on the right shows how the user can easily enable quantization using BigDL-Nano (with just a couple of lines of code); you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details.
|
| 159 |
''')
|
| 160 |
with gr.Column():
|
| 161 |
-
gr.Video(value="nano_quantize_api.mp4")
|
| 162 |
gr.Markdown('''
|
| 163 |
<h2>Demo</h2>
|
| 164 |
|
| 165 |
This section uses an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup). The demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation).
|
| 166 |
''')
|
| 167 |
with gr.Row().style(equal_height=False):
|
| 168 |
-
input_img = gr.Image(label="input image", value="Marvelous_Maisel.jpg", source="upload")
|
| 169 |
with gr.Column():
|
| 170 |
ori_but = gr.Button("Standard PyTorch Lightning")
|
| 171 |
nano_but = gr.Button("BigDL-Nano")
|
|
|
|
| 50 |
from pathlib import Path
|
| 51 |
from torch.utils.data import Dataset
|
| 52 |
import datetime
|
| 53 |
+
import huggingface_hub
|
| 54 |
|
| 55 |
|
| 56 |
device = 'cpu'
|
| 57 |
dtype = torch.float32
|
| 58 |
+
MODEL_REPO = 'CVPR/generator'
|
| 59 |
+
ckpt_path = huggingface_hub.hf_hub_download(
|
| 60 |
+
MODEL_REPO, f'generator.pt')
|
| 61 |
+
generator = torch.load(ckpt_path)
|
| 62 |
generator.eval()
|
| 63 |
generator.to(device, dtype)
|
| 64 |
params = {'batch_size': 1,
|
|
|
|
| 162 |
The video on the right shows how the user can easily enable quantization using BigDL-Nano (with just a couple of lines of code); you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details.
|
| 163 |
''')
|
| 164 |
with gr.Column():
|
| 165 |
+
gr.Video(value="data/nano_quantize_api.mp4")
|
| 166 |
gr.Markdown('''
|
| 167 |
<h2>Demo</h2>
|
| 168 |
|
| 169 |
This section uses an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup). The demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation).
|
| 170 |
''')
|
| 171 |
with gr.Row().style(equal_height=False):
|
| 172 |
+
input_img = gr.Image(label="input image", value="data/Marvelous_Maisel.jpg", source="upload")
|
| 173 |
with gr.Column():
|
| 174 |
ori_but = gr.Button("Standard PyTorch Lightning")
|
| 175 |
nano_but = gr.Button("BigDL-Nano")
|
Marvelous_Maisel.jpg → data/Marvelous_Maisel.jpg
RENAMED
|
File without changes
|
nano_quantize_api.mp4 → data/nano_quantize_api.mp4
RENAMED
|
File without changes
|
models/generator.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:975fa3b0d37bb3a019930258b52d64b8e575982069905580ac62762f2c8310d1
|
| 3 |
-
size 12813658
|
|
|
|
|
|
|
|
|
|
|
|