|
|
|
import gradio as gr |
|
import librosa |
|
from transformers import AutoFeatureExtractor, pipeline |
|
|
|
|
|
def load_and_fix_data(input_file, model_sampling_rate): |
|
speech, sample_rate = librosa.load(input_file) |
|
if len(speech.shape) > 1: |
|
speech = speech[:, 0] + speech[:, 1] |
|
if sample_rate != model_sampling_rate: |
|
speech = librosa.resample(speech, sample_rate, model_sampling_rate) |
|
return speech |
|
|
|
|
|
model_asr = "jonatasgrosman/wav2vec2-xls-r-1b-spanish" |
|
feature_extractor = AutoFeatureExtractor.from_pretrained(model_asr) |
|
sampling_rate = feature_extractor.sampling_rate |
|
asr = pipeline("automatic-speech-recognition", model=model_asr) |
|
|
|
|
|
model_sentiment_classifier = "finiteautomata/beto-sentiment-analysis" |
|
classifier = pipeline("sentiment-analysis", model = model_sentiment_classifier) |
|
|
|
|
|
def speech_to_text(speech): |
|
audio_transcription = asr(speech, chunk_length_s = 12, stride_length_s=1)["text"] |
|
return audio_transcription |
|
|
|
|
|
def sentiment_classifier(text): |
|
detected_sentiment = classifier(text)[0]["label"] |
|
return detected_sentiment |
|
|
|
new_line = "\n\n\n" |
|
|
|
|
|
def asr_and_sentiment_detection(input_file): |
|
speech = load_and_fix_data(input_file, sampling_rate) |
|
transcription = speech_to_text(speech) |
|
sentiment = sentiment_classifier(transcription) |
|
return f"Audio Transcription :{transcription} {new_line} Detected Sentiment: {sentiment}" |
|
|
|
|
|
inputs = [gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")] |
|
outputs = [gr.outputs.Textbox(label="Predicción")] |
|
examples = [["audio_test.wav"], ["sample_audio.wav"], ["test1.wav"], ["test2.wav"], ["Example1.wav"]] |
|
title = "Spanish ASR and Sentiment Classifier" |
|
|
|
description = """ This is a Gradio demo for Spanish ASR and Sentiment Analysis. First, we do Speech to Text conversion, and then we perform sentiment analysis on the obtained transcription of the input audio. |
|
|
|
**Note regarding predicted labels : NEG --> NEGATIVE, NEU --> NEUTRAL, POS --> POSITIVE** |
|
|
|
Pre-trained model used for Spanish ASR: [jonatasgrosman/wav2vec2-xls-r-1b-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-spanish) |
|
|
|
Pre-trained model used for Sentiment Analysis of transcribed audio: [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) |
|
""" |
|
|
|
|
|
gr.Interface( |
|
asr_and_sentiment_detection, |
|
inputs = inputs, |
|
outputs=outputs, |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
layout="horizontal", |
|
theme="huggingface", |
|
).launch(enable_queue=True) |
|
|