Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,42 +12,10 @@ def img2text(image_path):
|
|
| 12 |
return text
|
| 13 |
|
| 14 |
# text2story
|
| 15 |
-
def text2story(text):
|
| 16 |
-
# Using a smaller text generation model
|
| 17 |
-
generator = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 18 |
-
|
| 19 |
-
# Create a prompt for the story generation
|
| 20 |
-
prompt = f"Write a fun children's story based on this: {text}. Once upon a time, "
|
| 21 |
-
|
| 22 |
-
# Generate the story
|
| 23 |
-
story_result = generator(
|
| 24 |
-
prompt,
|
| 25 |
-
max_length=150,
|
| 26 |
-
num_return_sequences=1,
|
| 27 |
-
temperature=0.7,
|
| 28 |
-
top_k=50,
|
| 29 |
-
top_p=0.95,
|
| 30 |
-
do_sample=True
|
| 31 |
-
)
|
| 32 |
-
|
| 33 |
-
# Extract the generated text
|
| 34 |
-
story_text = story_result[0]['generated_text']
|
| 35 |
-
story_text = story_text.replace(prompt, "Once upon a time, ")
|
| 36 |
-
|
| 37 |
-
# Make sure the story is at least 100 words
|
| 38 |
-
words = story_text.split()
|
| 39 |
-
if len(words) > 100:
|
| 40 |
-
# Simply truncate to 100 words
|
| 41 |
-
story_text = " ".join(words[:100])
|
| 42 |
-
|
| 43 |
-
return story_text
|
| 44 |
-
|
| 45 |
-
# text2audio - REVISED to handle audio format correctly
|
| 46 |
-
# text2audio - REVISED with proper audio field handling
|
| 47 |
def text2audio(story_text):
|
| 48 |
try:
|
| 49 |
-
# Use the
|
| 50 |
-
synthesizer = pipeline("text-to-speech", model="
|
| 51 |
|
| 52 |
# Limit text length to avoid timeouts
|
| 53 |
max_chars = 500
|
|
@@ -59,29 +27,13 @@ def text2audio(story_text):
|
|
| 59 |
story_text = story_text[:max_chars]
|
| 60 |
|
| 61 |
# Generate speech
|
|
|
|
| 62 |
speech = synthesizer(story_text)
|
| 63 |
-
|
| 64 |
-
# Create a temporary WAV file
|
| 65 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
|
| 66 |
-
temp_filename = temp_file.name
|
| 67 |
-
temp_file.close()
|
| 68 |
-
|
| 69 |
-
# Debug: Show what keys are available in the speech output
|
| 70 |
st.write(f"Speech output keys: {list(speech.keys())}")
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
scipy.io.wavfile.write(
|
| 76 |
-
temp_filename,
|
| 77 |
-
speech['sampling_rate'],
|
| 78 |
-
speech['audio'].astype(np.float32)
|
| 79 |
-
)
|
| 80 |
-
st.write("Audio successfully written to file")
|
| 81 |
-
else:
|
| 82 |
-
raise ValueError(f"Expected 'audio' and 'sampling_rate' in output, but got: {list(speech.keys())}")
|
| 83 |
-
|
| 84 |
-
return temp_filename
|
| 85 |
|
| 86 |
except Exception as e:
|
| 87 |
st.error(f"Error generating audio: {str(e)}")
|
|
|
|
| 12 |
return text
|
| 13 |
|
| 14 |
# text2story
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def text2audio(story_text):
|
| 16 |
try:
|
| 17 |
+
# Use the HelpingAI TTS model as requested
|
| 18 |
+
synthesizer = pipeline("text-to-speech", model="HelpingAI/HelpingAI-TTS-v1")
|
| 19 |
|
| 20 |
# Limit text length to avoid timeouts
|
| 21 |
max_chars = 500
|
|
|
|
| 27 |
story_text = story_text[:max_chars]
|
| 28 |
|
| 29 |
# Generate speech
|
| 30 |
+
st.write("Generating audio...")
|
| 31 |
speech = synthesizer(story_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
st.write(f"Speech output keys: {list(speech.keys())}")
|
| 33 |
|
| 34 |
+
# We'll pass the audio data directly to Streamlit instead of saving to a file
|
| 35 |
+
# This works because Streamlit's st.audio() can take raw audio data
|
| 36 |
+
return speech
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
except Exception as e:
|
| 39 |
st.error(f"Error generating audio: {str(e)}")
|