Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,86 +1,22 @@
|
|
| 1 |
-
# Imports
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import pipeline
|
| 4 |
from PIL import Image
|
| 5 |
-
import torch
|
| 6 |
import os
|
| 7 |
import tempfile
|
| 8 |
-
import
|
| 9 |
-
import numpy as np
|
| 10 |
|
| 11 |
-
#
|
| 12 |
@st.cache_resource
|
| 13 |
-
def
|
| 14 |
-
"""Load and cache
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
return pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 21 |
-
|
| 22 |
-
@st.cache_resource
|
| 23 |
-
def load_tts_pipeline():
|
| 24 |
-
"""Load and cache the text-to-speech pipeline as fallback"""
|
| 25 |
-
try:
|
| 26 |
-
return pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
| 27 |
-
except:
|
| 28 |
-
# Return None if loading fails
|
| 29 |
-
return None
|
| 30 |
-
|
| 31 |
-
# Initialize all models at app startup
|
| 32 |
-
with st.spinner("Loading models (this may take a moment the first time)..."):
|
| 33 |
-
# Load all models at startup and cache them
|
| 34 |
-
img2text_model = load_image_to_text_pipeline()
|
| 35 |
-
story_generator_model = load_text_generation_pipeline()
|
| 36 |
-
tts_fallback_model = load_tts_pipeline()
|
| 37 |
-
|
| 38 |
-
# For TTS, try multiple options in order of preference
|
| 39 |
-
try:
|
| 40 |
-
# Try importing gTTS
|
| 41 |
-
from gtts import gTTS
|
| 42 |
-
has_gtts = True
|
| 43 |
-
except ImportError:
|
| 44 |
-
has_gtts = False
|
| 45 |
-
if tts_fallback_model is None:
|
| 46 |
-
st.warning("No text-to-speech capability available. Audio generation will be disabled.")
|
| 47 |
-
|
| 48 |
-
# Cache the text-to-audio conversion
|
| 49 |
-
@st.cache_data
|
| 50 |
-
def text2audio(story_text):
|
| 51 |
-
"""Convert text to audio with caching to avoid regenerating the same audio"""
|
| 52 |
-
if has_gtts:
|
| 53 |
-
# Use gTTS
|
| 54 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
| 55 |
-
temp_filename = temp_file.name
|
| 56 |
-
temp_file.close()
|
| 57 |
-
|
| 58 |
-
# Use gTTS to convert text to speech
|
| 59 |
-
tts = gTTS(text=story_text, lang='en', slow=False)
|
| 60 |
-
tts.save(temp_filename)
|
| 61 |
-
|
| 62 |
-
# Read the audio file
|
| 63 |
-
with open(temp_filename, 'rb') as audio_file:
|
| 64 |
-
audio_bytes = audio_file.read()
|
| 65 |
-
|
| 66 |
-
# Clean up the temporary file
|
| 67 |
-
os.unlink(temp_filename)
|
| 68 |
-
|
| 69 |
-
return audio_bytes, 'audio/mp3'
|
| 70 |
-
elif tts_fallback_model is not None:
|
| 71 |
-
# Use transformers TTS
|
| 72 |
-
speech = tts_fallback_model(story_text)
|
| 73 |
-
|
| 74 |
-
# Return the audio data
|
| 75 |
-
if 'audio' in speech:
|
| 76 |
-
return speech['audio'], speech.get('sampling_rate', 16000)
|
| 77 |
-
elif 'audio_array' in speech:
|
| 78 |
-
return speech['audio_array'], speech.get('sampling_rate', 16000)
|
| 79 |
-
|
| 80 |
-
# If we got here, no TTS method worked
|
| 81 |
-
raise Exception("No text-to-speech capability available")
|
| 82 |
|
| 83 |
-
# Convert PIL Image to bytes for
|
| 84 |
def get_image_bytes(pil_img):
|
| 85 |
"""Convert PIL image to bytes for hashing"""
|
| 86 |
import io
|
|
@@ -90,29 +26,21 @@ def get_image_bytes(pil_img):
|
|
| 90 |
|
| 91 |
# Simple image-to-text function using cached model
|
| 92 |
@st.cache_data
|
| 93 |
-
def img2text(image_bytes):
|
| 94 |
-
"""Convert image to text with caching
|
| 95 |
-
# Convert bytes back to PIL image for processing
|
| 96 |
import io
|
| 97 |
-
from PIL import Image
|
| 98 |
pil_img = Image.open(io.BytesIO(image_bytes))
|
| 99 |
-
|
| 100 |
-
# Process with the model
|
| 101 |
-
result = img2text_model(pil_img)
|
| 102 |
return result[0]["generated_text"]
|
| 103 |
|
| 104 |
-
#
|
| 105 |
-
def count_words(text):
|
| 106 |
-
return len(text.split())
|
| 107 |
-
|
| 108 |
-
# Improved text-to-story function without "Once upon a time" constraint
|
| 109 |
@st.cache_data
|
| 110 |
-
def text2story(text):
|
| 111 |
-
|
| 112 |
prompt = f"Write a short children's story based on this: {text}. The story should have a clear beginning, middle, and end. Keep it under 150 words. "
|
| 113 |
|
| 114 |
# Generate a longer text to ensure we get a complete story
|
| 115 |
-
story_result =
|
| 116 |
prompt,
|
| 117 |
max_length=300,
|
| 118 |
num_return_sequences=1,
|
|
@@ -148,89 +76,57 @@ def text2story(text):
|
|
| 148 |
# If no good ending is found, return as is
|
| 149 |
return story_text
|
| 150 |
|
| 151 |
-
#
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
#
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
-
#
|
| 170 |
-
|
| 171 |
-
st.session_state.progress = {
|
| 172 |
-
'caption_generated': False,
|
| 173 |
-
'story_generated': False,
|
| 174 |
-
'audio_generated': False,
|
| 175 |
-
'caption': '',
|
| 176 |
-
'story': '',
|
| 177 |
-
'audio_data': None,
|
| 178 |
-
'audio_format': None
|
| 179 |
-
}
|
| 180 |
|
| 181 |
# File uploader
|
| 182 |
-
uploaded_file = st.file_uploader("Upload an image"
|
| 183 |
|
| 184 |
-
# Process the image if uploaded
|
| 185 |
if uploaded_file is not None:
|
| 186 |
# Display image
|
| 187 |
-
st.image(uploaded_file, caption="Uploaded Image")
|
| 188 |
-
|
| 189 |
-
# Convert to PIL Image
|
| 190 |
image = Image.open(uploaded_file)
|
|
|
|
| 191 |
|
| 192 |
-
#
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
st.
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
word_count = count_words(st.session_state.progress['story'])
|
| 211 |
-
st.write(f"Story ({word_count} words):")
|
| 212 |
-
st.write(st.session_state.progress['story'])
|
| 213 |
-
|
| 214 |
-
# Pre-generate audio in background (if not already done)
|
| 215 |
-
if not st.session_state.progress['audio_generated'] and (has_gtts or tts_fallback_model is not None):
|
| 216 |
-
status_container.info("Pre-generating audio in background...")
|
| 217 |
-
try:
|
| 218 |
-
st.session_state.progress['audio_data'], st.session_state.progress['audio_format'] = text2audio(st.session_state.progress['story'])
|
| 219 |
-
st.session_state.progress['audio_generated'] = True
|
| 220 |
-
status_container.success("Ready to play audio!")
|
| 221 |
-
except Exception as e:
|
| 222 |
-
status_container.error(f"Error pre-generating audio: {e}")
|
| 223 |
|
| 224 |
-
#
|
| 225 |
if st.button("Play the audio"):
|
| 226 |
-
|
| 227 |
-
# Display the audio player
|
| 228 |
-
if isinstance(st.session_state.progress['audio_format'], str) and st.session_state.progress['audio_format'].startswith('audio/'):
|
| 229 |
-
st.audio(st.session_state.progress['audio_data'], format=st.session_state.progress['audio_format'])
|
| 230 |
-
else:
|
| 231 |
-
st.audio(st.session_state.progress['audio_data'], sample_rate=st.session_state.progress['audio_format'])
|
| 232 |
-
else:
|
| 233 |
-
# Handle case where audio generation failed or is not available
|
| 234 |
-
st.error("Unable to play audio. Audio generation was not successful.")
|
| 235 |
-
else:
|
| 236 |
-
status_container.info("Upload an image to begin")
|
|
|
|
| 1 |
+
# Imports - just the essentials
|
| 2 |
import streamlit as st
|
| 3 |
from transformers import pipeline
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
+
from gtts import gTTS
|
|
|
|
| 8 |
|
| 9 |
+
# Preload and cache all models at app startup
|
| 10 |
@st.cache_resource
|
| 11 |
+
def load_models():
|
| 12 |
+
"""Load all models and cache them for faster execution"""
|
| 13 |
+
models = {
|
| 14 |
+
"image_captioner": pipeline("image-to-text", model="sooh-j/blip-image-captioning-base"),
|
| 15 |
+
"story_generator": pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
| 16 |
+
}
|
| 17 |
+
return models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Convert PIL Image to bytes for caching compatibility
|
| 20 |
def get_image_bytes(pil_img):
|
| 21 |
"""Convert PIL image to bytes for hashing"""
|
| 22 |
import io
|
|
|
|
| 26 |
|
| 27 |
# Simple image-to-text function using cached model
|
| 28 |
@st.cache_data
|
| 29 |
+
def img2text(image_bytes, models):
|
| 30 |
+
"""Convert image to text with caching"""
|
|
|
|
| 31 |
import io
|
|
|
|
| 32 |
pil_img = Image.open(io.BytesIO(image_bytes))
|
| 33 |
+
result = models["image_captioner"](pil_img)
|
|
|
|
|
|
|
| 34 |
return result[0]["generated_text"]
|
| 35 |
|
| 36 |
+
# Generate story from text - using your approach with caching
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
@st.cache_data
|
| 38 |
+
def text2story(text, models):
|
| 39 |
+
"""Generate a story from text with sensible endings"""
|
| 40 |
prompt = f"Write a short children's story based on this: {text}. The story should have a clear beginning, middle, and end. Keep it under 150 words. "
|
| 41 |
|
| 42 |
# Generate a longer text to ensure we get a complete story
|
| 43 |
+
story_result = models["story_generator"](
|
| 44 |
prompt,
|
| 45 |
max_length=300,
|
| 46 |
num_return_sequences=1,
|
|
|
|
| 76 |
# If no good ending is found, return as is
|
| 77 |
return story_text
|
| 78 |
|
| 79 |
+
# Text-to-speech function
|
| 80 |
+
@st.cache_data
|
| 81 |
+
def text2audio(story_text):
|
| 82 |
+
"""Convert text to audio"""
|
| 83 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3')
|
| 84 |
+
temp_filename = temp_file.name
|
| 85 |
+
temp_file.close()
|
| 86 |
+
|
| 87 |
+
tts = gTTS(text=story_text, lang='en')
|
| 88 |
+
tts.save(temp_filename)
|
| 89 |
+
|
| 90 |
+
with open(temp_filename, 'rb') as audio_file:
|
| 91 |
+
audio_bytes = audio_file.read()
|
| 92 |
+
|
| 93 |
+
os.unlink(temp_filename)
|
| 94 |
+
return audio_bytes
|
| 95 |
|
| 96 |
+
# Load models at startup - this happens before the app interface is displayed
|
| 97 |
+
models = load_models()
|
| 98 |
+
st.write("✅ Models loaded and cached!")
|
| 99 |
|
| 100 |
+
# Streamlit app interface
|
| 101 |
+
st.title("Image to Audio Story")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# File uploader
|
| 104 |
+
uploaded_file = st.file_uploader("Upload an image")
|
| 105 |
|
|
|
|
| 106 |
if uploaded_file is not None:
|
| 107 |
# Display image
|
|
|
|
|
|
|
|
|
|
| 108 |
image = Image.open(uploaded_file)
|
| 109 |
+
st.image(image, caption="Uploaded Image", width=300)
|
| 110 |
|
| 111 |
+
# Process image
|
| 112 |
+
with st.spinner("Processing..."):
|
| 113 |
+
# Convert to bytes for caching
|
| 114 |
+
image_bytes = get_image_bytes(image)
|
| 115 |
+
|
| 116 |
+
# Generate caption
|
| 117 |
+
caption = img2text(image_bytes, models)
|
| 118 |
+
st.write(f"**Caption:** {caption}")
|
| 119 |
+
|
| 120 |
+
# Generate story
|
| 121 |
+
story = text2story(caption, models)
|
| 122 |
+
word_count = len(story.split())
|
| 123 |
+
st.write(f"**Story ({word_count} words):**")
|
| 124 |
+
st.write(story)
|
| 125 |
+
|
| 126 |
+
# Pre-generate audio
|
| 127 |
+
if 'audio' not in st.session_state:
|
| 128 |
+
st.session_state.audio = text2audio(story)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
# Play audio button
|
| 131 |
if st.button("Play the audio"):
|
| 132 |
+
st.audio(st.session_state.audio, format="audio/mp3")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|