Spaces:
Running
Running
| import os | |
| import requests | |
| import pandas as pd | |
| import streamlit as st | |
| import time | |
| import matplotlib | |
| import plotly.express as px | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| def is_missing(value): | |
| return pd.isna(value) or str(value).strip() == "" | |
| # Load the Hugging Face API key from environment | |
| api_key = os.getenv('HF_API') | |
| def get_huggingface_suggestions(title, description): | |
| API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli" | |
| headers = {"Authorization": f"Bearer {api_key}"} | |
| full_text = f"{title}. {description}".strip() | |
| if not full_text: | |
| return None | |
| candidate_labels = [ | |
| "History", "Politics", "Science", "Technology", "Art", "Literature", | |
| "Education", "Economics", "Military", "Geography", "Sociology", | |
| "Philosophy", "Religion", "Law", "Medicine", "Engineering", | |
| "Mathematics", "Computer Science", "Agriculture", "Environment", | |
| "Maps", "United States", "Civil War", "Revolution", "Posters", "Women's Rights", "World War I" | |
| ] | |
| payload = { | |
| "inputs": full_text, | |
| "parameters": { | |
| "candidate_labels": candidate_labels, | |
| "multi_label": True | |
| } | |
| } | |
| try: | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| result = response.json() | |
| if "error" in result: | |
| st.error(f"API error: {result['error']}") | |
| return None | |
| labels = [ | |
| label for label, score in zip(result.get("labels", []), result.get("scores", [])) | |
| if score > 0.3 | |
| ] | |
| return ", ".join(labels) if labels else None | |
| except Exception as e: | |
| st.error(f"API Error: {e}") | |
| return None | |
| # Custom CSS | |
| st.markdown(""" | |
| <style> | |
| .main { | |
| background-color: #1A1A1A !important; /* dark */ | |
| color: #D3D3D3 !important; | |
| } | |
| } | |
| .block-container { | |
| background-color: #D3D3D3 !important; | |
| color: #cccccc !important; | |
| padding-left: 3rem !important; | |
| padding-right: 3rem !important; | |
| max-width: 900px; /* widen main feed */ | |
| margin: auto; /* center it */ | |
| } | |
| /* Headings */ | |
| h1, h2, h3, h4 { | |
| color: #eeeeee !important; /* brighter light gray for headings */ | |
| font-weight: 700 !important; /* bold */ | |
| margin-bottom: 1rem !important; | |
| } | |
| p, span, div { | |
| color: #cccccc !important; | |
| } | |
| /* Subheaders (optional) */ | |
| .stSubheader { | |
| color: #dddddd !important; | |
| font-size: 1.4rem !important; | |
| } | |
| /* Dataframes (optional tweak) */ | |
| .stDataFrame { | |
| background-color: #2e2e2e !important; | |
| border-radius: 10px; | |
| padding: 1rem; | |
| } | |
| section[data-testid="stSidebar"] > div:first-child { | |
| background-color: #808080 !important; | |
| padding: 1rem; | |
| border-radius: 0.5rem; | |
| color: #808080 !important; | |
| } | |
| .stMarkdown, .stTextInput, .stDataFrame { | |
| color: #1A1A1A!important; | |
| } | |
| img.banner { | |
| width: 100%; | |
| border-radius: 12px; | |
| margin-bottom: 1rem; | |
| } | |
| .stAlert { | |
| background-color: #f0f0f5 !important; | |
| color: #1A1A1A !important; | |
| padding: 1.25rem !important; | |
| font-size: 1rem !important; | |
| border-radius: 0.5rem !important; | |
| box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05) !important; | |
| } | |
| header[data-testid="stHeader"] { | |
| background-color: #1A1A1A !important; | |
| } | |
| section[data-testid="stSidebar"] > div:first-child { | |
| background-color: #1A1A1A !important; | |
| color: #FFFFFF !important; | |
| padding: 2rem 1.5rem 1.5rem 1.5rem !important; | |
| border-radius: 12px; | |
| box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); | |
| font-size: 0.95rem; | |
| line-height: 1.5; | |
| } | |
| ; | |
| html, body, [data-testid="stApp"] { | |
| background-color: #1A1A1A !important; | |
| } | |
| .custom-table { | |
| background-color: #D3D3D3; | |
| color: #1A1A1A; | |
| font-family: monospace; | |
| padding: 1rem; | |
| border-radius: 8px; | |
| overflow-x: auto; | |
| white-space: pre; | |
| border: 1px solid #ccc; | |
| } | |
| .sidebar-stats { | |
| color: lightgray !important; | |
| font-size: 1.1rem !important; | |
| margin-top: 1.5rem; | |
| font-weight: 600; | |
| } | |
| .sidebar-contrast-block { | |
| background-color: #2b2b2b !important; | |
| padding: 1.25rem; | |
| border-radius: 10px; | |
| margin-top: 1.5rem; | |
| } | |
| section.main > div { /* widen main container */ | |
| max-width: 95%; | |
| padding-left: 3rem; | |
| padding-right: 3rem; | |
| } | |
| </style> | |
| """, unsafe_allow_html=True) | |
| # Function to get subject suggestions using Hugging Face API | |
| def get_huggingface_suggestions(title, description): | |
| API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-mnli" | |
| # Rest of the function code... | |
| # Use an image from a URL for the banner | |
| st.image("https://cdn-uploads.huggingface.co/production/uploads/67351c643fe51cb1aa28f2e5/7ThcAOjbuM8ajrP85bGs4.jpeg", use_container_width=True) | |
| # Streamlit app header | |
| st.title("MetaDiscovery Agent for Library of Congress Collections") | |
| st.markdown(""" | |
| This tool connects to the LOC API, retrieves metadata from a selected collection, and performs | |
| an analysis of metadata completeness, suggests enhancements, and identifies authority gaps. | |
| """) | |
| # Updated collection URLs using the correct LOC API | |
| collections = { | |
| "American Revolutionary War Maps": "american+revolutionary+war+maps", | |
| "Civil War Maps": "civil+war+maps", | |
| "Women's Suffrage": "women+suffrage", | |
| "World War I Posters": "world+war+posters" | |
| } | |
| # Sidebar for selecting collection | |
| #st.sidebar.markdown("## Settings") | |
| # Create empty metadata_df variable to ensure it exists before checking | |
| metadata_df = pd.DataFrame() | |
| # Add a key to the selectbox to ensure it refreshes properly | |
| with st.sidebar: | |
| st.markdown(""" | |
| <div style=' | |
| background-color: #2b2b2b | |
| padding: 1.5rem; | |
| border-radius: 12px; | |
| margin-bottom: 1.5rem; | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
| '> | |
| """, unsafe_allow_html=True) | |
| selected = st.radio("Select a Collection", list(collections.keys()), key="collection_selector") | |
| st.markdown("</div>", unsafe_allow_html=True) | |
| search_query = collections[selected] | |
| # Define the collection URL | |
| collection_url = f"https://www.loc.gov/search/?q={search_query}&fo=json" | |
| # Create an empty placeholder for Quick Stats | |
| stats_placeholder = st.sidebar.empty() | |
| # Add a fetch button to make the action explicit | |
| fetch_data = True | |
| if fetch_data: | |
| # Display a loading spinner while fetching data | |
| with st.spinner(f"Fetching data for {selected}..."): | |
| # Fetch data from LOC API with spoofed User-Agent header | |
| headers = { | |
| "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome/110.0.0.0 Safari/537.36" | |
| } | |
| try: | |
| response = requests.get(collection_url, headers=headers) | |
| response.raise_for_status() | |
| data = response.json() | |
| if "results" in data: | |
| records = data.get("results", []) | |
| elif "items" in data: | |
| records = data.get("items", []) | |
| else: | |
| records = [] | |
| st.error("Unexpected API response structure. No records found.") | |
| st.write(f"Retrieved {len(records)} records") | |
| except requests.exceptions.RequestException as e: | |
| st.error(f"API Connection Error: {e}") | |
| records = [] | |
| except ValueError: | |
| st.error("Failed to parse API response as JSON") | |
| records = [] | |
| # Extract selected metadata fields | |
| items = [] | |
| for record in records: | |
| if isinstance(record, dict): | |
| description = record.get("description", "") | |
| if isinstance(description, list): | |
| description = " ".join([str(d) for d in description]) | |
| item = { | |
| "id": record.get("id", ""), | |
| "title": record.get("title", ""), | |
| "date": record.get("date", ""), | |
| "subject": ", ".join(record.get("subject", [])) if isinstance(record.get("subject"), list) else record.get("subject", ""), | |
| "creator": record.get("creator", ""), | |
| "description": description | |
| } | |
| if not item["title"] and "item" in record: | |
| item["title"] = record.get("item", {}).get("title", "") | |
| if not item["date"] and "item" in record: | |
| item["date"] = record.get("item", {}).get("date", "") | |
| items.append(item) | |
| metadata_df = pd.DataFrame(items) | |
| # Missing field detection | |
| fields_to_check = ["subject", "creator", "date", "title", "description"] | |
| missing_counts = {} | |
| for field in fields_to_check: | |
| if field in metadata_df.columns: | |
| missing = metadata_df[field].apply(is_missing) | |
| missing_counts[field] = missing.sum() | |
| # Define custom completeness check | |
| def is_incomplete(value): | |
| return pd.isna(value) or value in ["", "N/A", "null", None] | |
| if not metadata_df.empty: | |
| # --- Unified Completeness and Missing Fields Analysis --- | |
| #Define incompleteness at the cell level | |
| is_incomplete = lambda value: pd.isna(value) or value in ["", "N/A", "null", None] | |
| #Create a mask for missing values | |
| missing_mask = metadata_df.map(is_incomplete) | |
| #Compute overall record-level completeness | |
| incomplete_count = missing_mask.any(axis=1).sum() | |
| total_fields = metadata_df.size | |
| filled_fields = (~missing_mask).sum().sum() | |
| overall_percent = (filled_fields / total_fields) * 100 | |
| #Field-specific missing counts (for Missing Metadata Summary) | |
| missing_counts = missing_mask.sum().sort_values(ascending=False) | |
| missing_df = ( | |
| pd.DataFrame(missing_counts) | |
| .reset_index() | |
| .rename(columns={"index": "Field", 0: "Missing Count"}) | |
| ) | |
| # Field-level completeness | |
| completeness = (~metadata_df.map(is_incomplete)).mean() * 100 | |
| completeness_df = pd.DataFrame({"Field": completeness.index, "Completeness (%)": completeness.values}) | |
| completeness_table = completeness_df.set_index("Field") | |
| # Sidebar Quick Stats | |
| quick_stats = pd.DataFrame({ | |
| "Metric": ["Total Records", "Incomplete Records", "Percent Complete"], | |
| "Value": [len(metadata_df), incomplete_count, round(overall_percent, 1)] | |
| }) | |
| styled_quick_stats = ( | |
| quick_stats.style | |
| .hide(axis="index") | |
| .background_gradient(cmap="Oranges", subset=["Value"]) | |
| .format({"Value": "{:.1f}"}) | |
| ) | |
| # Add an expander and put the dataframe inside it | |
| with st.sidebar.expander("Quick Stats", expanded=True): | |
| st.dataframe( | |
| styled_quick_stats, | |
| use_container_width=True, | |
| hide_index=True | |
| ) | |
| # Sidebar: Metadata Missing Stats | |
| missing_df = ( | |
| pd.DataFrame(list(missing_counts.items()), columns=["Field", "Missing Count"]) | |
| .sort_values(by="Missing Count", ascending=False) | |
| .reset_index(drop=True) | |
| ) | |
| styled_missing_df = ( | |
| missing_df.style | |
| .background_gradient(cmap="Blues", subset=["Missing Count"]) | |
| .hide(axis="index") | |
| ) | |
| with st.sidebar.expander("🧹 Missing Metadata Summary", expanded=True): | |
| st.dataframe( | |
| styled_missing_df, | |
| use_container_width=True, | |
| hide_index=True, # <<< ADD THIS | |
| height=min(300, len(missing_df) * 35 + 38) | |
| ) | |
| # Calculate Top 10 Subjects | |
| if 'subject' in metadata_df.columns: | |
| top_subjects = ( | |
| metadata_df['subject'] | |
| .dropna() | |
| .str.split(',') | |
| .explode() | |
| .str.strip() | |
| .value_counts() | |
| .head(10) | |
| .to_frame(name="Count") | |
| ) | |
| #Most Common Subjects in Sidebar | |
| with st.sidebar.expander("Top 10 Most Common Subjects", expanded=True): | |
| st.dataframe( | |
| top_subjects.style.background_gradient(cmap="Greens").format("{:.0f}"), | |
| use_container_width=True, | |
| height=240 | |
| ) | |
| with st.sidebar.expander("Helpful Resources", expanded=False): | |
| st.markdown(""" | |
| <style> | |
| .sidebar-links a { | |
| color: lightgray !important; | |
| text-decoration: none !important; | |
| } | |
| .sidebar-links a:hover { | |
| text-decoration: underline !important; | |
| } | |
| </style> | |
| <div class="sidebar-links"> | |
| <ul style='padding-left: 1em'> | |
| <li><a href="https://www.loc.gov/apis/" target="_blank">LOC API Info</a></li> | |
| <li><a href="https://www.loc.gov/" target="_blank">Library of Congress Homepage</a></li> | |
| <li><a href="https://www.loc.gov/collections/" target="_blank">LOC Digital Collections</a></li> | |
| <li><a href="https://www.loc.gov/marc/" target="_blank">MARC Metadata Standards</a></li> | |
| <li><a href="https://labs.loc.gov/about-labs/digital-strategy/" target="_blank">LOC Digital Strategy</a></li> | |
| </ul> | |
| </div> | |
| """, unsafe_allow_html=True) | |
| # Utility functions for deeper metadata quality analysis | |
| def is_incomplete(value): | |
| return pd.isna(value) or value in ["", "N/A", "null", None] | |
| def is_valid_date(value): | |
| try: | |
| pd.to_datetime(value) | |
| return True | |
| except: | |
| return False | |
| if not metadata_df.empty: | |
| st.subheader("Retrieved Metadata Sample") | |
| st.dataframe(metadata_df.head()) | |
| st.subheader("Field Completeness Breakdown") | |
| #DARK box for the Field Completeness Breakdown (MATCH others!) | |
| st.markdown(""" | |
| <div style=' | |
| background-color: #2e2e2e; | |
| padding: 1.5rem; | |
| border-radius: 10px; | |
| margin-top: 1.5rem; | |
| color: lightgray; | |
| '> | |
| """, unsafe_allow_html=True) | |
| #Dataframe inside the dark box | |
| st.dataframe( | |
| completeness_table.style | |
| .background_gradient(cmap="Greens") | |
| .format("{:.0f}%") | |
| .hide(axis="index"), | |
| use_container_width=True, | |
| height=240 | |
| ) | |
| st.markdown("</div>", unsafe_allow_html=True) | |
| # Identify incomplete records | |
| incomplete_mask = metadata_df.map(is_incomplete).any(axis=1) | |
| incomplete_records = metadata_df[incomplete_mask] | |
| # --- Suggested Metadata Enhancements Section --- | |
| st.subheader("Suggested Metadata Enhancements") | |
| # Create a row with checkbox for AI suggestions - with proper label | |
| use_ai = st.checkbox("Use AI Suggestions", value=True, label_visibility="hidden") | |
| st.markdown("🤖 Use AI Suggestions (Hugging Face)") | |
| # Check if records exist | |
| incomplete_with_desc = metadata_df[ | |
| (metadata_df['description'].notnull() | metadata_df['title'].notnull()) & | |
| (metadata_df['subject'].isnull()) | |
| ] | |
| if not incomplete_with_desc.empty: | |
| if use_ai: | |
| suggestions = [] | |
| records_to_process = min(10, len(incomplete_with_desc)) | |
| progress = st.progress(0) | |
| status = st.empty() | |
| for i, (idx, row) in enumerate(incomplete_with_desc.iterrows()): | |
| if i >= records_to_process: | |
| break | |
| title = row['title'] if pd.notna(row['title']) else "" | |
| description = row['description'] if pd.notna(row['description']) else "" | |
| status.text(f"Analyzing {i+1}/{records_to_process}: {title[:30]}...") | |
| suggested_subject = get_huggingface_suggestions(title, description) | |
| if suggested_subject: | |
| suggestions.append((title, suggested_subject)) | |
| progress.progress((i + 1) / records_to_process) | |
| status.empty() | |
| progress.empty() | |
| if suggestions: | |
| suggestions_df = pd.DataFrame(suggestions, columns=["Title", "Suggested Subject"]) | |
| # Create a custom dark-styled HTML table instead | |
| html_table = """ | |
| <div style="background-color: #1e1e1e; padding: 1.5rem; border-radius: 10px; margin-top: 1rem;"> | |
| <table style="width: 100%; border-collapse: collapse; color: #e0e0e0;"> | |
| <thead> | |
| <tr style="border-bottom: 1px solid #444;"> | |
| <th style="padding: 12px; text-align: left; color: #e0e0e0;">Title</th> | |
| <th style="padding: 12px; text-align: left; color: #e0e0e0;">Suggested Subject</th> | |
| </tr> | |
| </thead> | |
| <tbody> | |
| """ | |
| for _, row in suggestions_df.iterrows(): | |
| title = row['Title'] | |
| title_display = title[:50] + "..." if len(title) > 50 else title | |
| subject = row['Suggested Subject'] | |
| # Calculate a shade of green based on confidence or some other metric | |
| # For demonstration, using a fixed green shade | |
| green_shade = "rgba(0, 100, 0, 0.3)" | |
| html_table += f""" | |
| <tr style="border-bottom: 1px solid #444;"> | |
| <td style="padding: 12px; text-align: left;">{title_display}</td> | |
| <td style="padding: 12px; text-align: left; background-color: {green_shade};">{subject}</td> | |
| </tr> | |
| """ | |
| html_table += """ | |
| </tbody> | |
| </table> | |
| </div> | |
| """ | |
| st.markdown(html_table, unsafe_allow_html=True) | |
| else: | |
| st.markdown(""" | |
| <div style="background-color: #1e1e1e; padding: 1.5rem; border-radius: 10px; margin-top: 1rem; color: #e0e0e0;"> | |
| No metadata enhancement suggestions available. | |
| </div> | |
| """, unsafe_allow_html=True) | |
| else: | |
| st.markdown(""" | |
| <div style="background-color: #1e1e1e; padding: 1.5rem; border-radius: 10px; margin-top: 1rem; color: #e0e0e0;"> | |
| Enable AI Suggestions to view recommendations. | |
| </div> | |
| """, unsafe_allow_html=True) | |
| else: | |
| st.markdown(""" | |
| <div style="background-color: #1e1e1e; padding: 1.5rem; border-radius: 10px; margin-top: 1rem; color: #e0e0e0;"> | |
| All records already have subjects or no usable text available. | |
| </div> | |
| """, unsafe_allow_html=True) | |