Spaces:
Running
Running
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import plotly.graph_objects as go | |
| import plotly.express as px | |
| from datetime import datetime, timedelta | |
| import requests | |
| import json | |
| from typing import Dict, List, Tuple, Optional | |
| import warnings | |
| import time | |
| import traceback | |
| warnings.filterwarnings('ignore') | |
| class OceanCurrentMapper: | |
| def __init__(self): | |
| self.noaa_base_url = "https://api.tidesandcurrents.noaa.gov/api/prod/datagetter" | |
| self.oscar_base_url = "https://podaac-opendap.jpl.nasa.gov/opendap/allData/oscar/preview/L4/oscar_third_deg" | |
| def get_noaa_current_data(self, station_id: str, start_date: str, end_date: str) -> pd.DataFrame: | |
| """Fetch current data from NOAA API""" | |
| try: | |
| params = { | |
| 'product': 'currents', | |
| 'application': 'OceanCurrentMapper', | |
| 'begin_date': start_date, | |
| 'end_date': end_date, | |
| 'station': station_id, | |
| 'time_zone': 'gmt', | |
| 'units': 'metric', | |
| 'format': 'json' | |
| } | |
| response = requests.get(self.noaa_base_url, params=params, timeout=10) | |
| if response.status_code == 200: | |
| data = response.json() | |
| if 'data' in data: | |
| df = pd.DataFrame(data['data']) | |
| return df | |
| return pd.DataFrame() | |
| except Exception as e: | |
| print(f"Error fetching NOAA data: {e}") | |
| return pd.DataFrame() | |
| def generate_synthetic_current_data(self, region: str, resolution: str) -> Dict: | |
| """Generate synthetic ocean current data for demonstration""" | |
| # Define region boundaries | |
| regions = { | |
| "Gulf of Mexico": {"lat": [18, 31], "lon": [-98, -80]}, | |
| "California Coast": {"lat": [32, 42], "lon": [-125, -117]}, | |
| "Atlantic Coast": {"lat": [25, 45], "lon": [-81, -65]}, | |
| "Global": {"lat": [-60, 60], "lon": [-180, 180]} | |
| } | |
| # Set resolution | |
| res_map = {"High": 0.1, "Medium": 0.25, "Low": 0.5} | |
| res = res_map.get(resolution, 0.25) | |
| # Get region bounds | |
| bounds = regions.get(region, regions["Global"]) | |
| # Create coordinate grids | |
| lats = np.arange(bounds["lat"][0], bounds["lat"][1], res) | |
| lons = np.arange(bounds["lon"][0], bounds["lon"][1], res) | |
| # Generate realistic current patterns | |
| lat_grid, lon_grid = np.meshgrid(lats, lons, indexing='ij') | |
| # Create realistic current vectors using oceanographic patterns | |
| # Gulf Stream-like eastward flow | |
| u_component = 0.5 * np.sin(np.pi * (lat_grid - bounds["lat"][0]) / (bounds["lat"][1] - bounds["lat"][0])) | |
| # Cross-shore component | |
| v_component = 0.3 * np.cos(np.pi * (lon_grid - bounds["lon"][0]) / (bounds["lon"][1] - bounds["lon"][0])) | |
| # Add some turbulence and eddies | |
| u_component += 0.2 * np.random.normal(0, 0.1, u_component.shape) | |
| v_component += 0.2 * np.random.normal(0, 0.1, v_component.shape) | |
| # Calculate current speed and direction | |
| speed = np.sqrt(u_component**2 + v_component**2) | |
| direction = np.arctan2(v_component, u_component) * 180 / np.pi | |
| return { | |
| 'latitude': lat_grid, | |
| 'longitude': lon_grid, | |
| 'u_component': u_component, | |
| 'v_component': v_component, | |
| 'speed': speed, | |
| 'direction': direction, | |
| 'timestamp': datetime.now().isoformat() | |
| } | |
| def create_current_map(self, region: str, resolution: str, show_vectors: bool, | |
| show_speed: bool, vector_scale: float) -> go.Figure: | |
| """Create interactive ocean current map with improved sizing""" | |
| # Get current data | |
| current_data = self.generate_synthetic_current_data(region, resolution) | |
| fig = go.Figure() | |
| # Add speed contours if requested | |
| if show_speed: | |
| fig.add_trace(go.Contour( | |
| x=current_data['longitude'][0, :], | |
| y=current_data['latitude'][:, 0], | |
| z=current_data['speed'], | |
| colorscale='Viridis', | |
| name='Current Speed (m/s)', | |
| showscale=True, | |
| colorbar=dict( | |
| title="Speed (m/s)", | |
| x=1.02, | |
| thickness=15, | |
| len=0.7 | |
| ) | |
| )) | |
| # Add vector field if requested | |
| if show_vectors: | |
| # Subsample for better visibility | |
| step = max(1, len(current_data['latitude']) // 20) | |
| lat_sub = current_data['latitude'][::step, ::step] | |
| lon_sub = current_data['longitude'][::step, ::step] | |
| u_sub = current_data['u_component'][::step, ::step] * vector_scale | |
| v_sub = current_data['v_component'][::step, ::step] * vector_scale | |
| # Create arrow annotations | |
| for i in range(lat_sub.shape[0]): | |
| for j in range(lat_sub.shape[1]): | |
| if i % 2 == 0 and j % 2 == 0: # Further subsample | |
| fig.add_annotation( | |
| ax=lon_sub[i, j], | |
| ay=lat_sub[i, j], | |
| axref='x', | |
| ayref='y', | |
| x=lon_sub[i, j] + u_sub[i, j], | |
| y=lat_sub[i, j] + v_sub[i, j], | |
| xref='x', | |
| yref='y', | |
| arrowhead=2, | |
| arrowsize=1, | |
| arrowwidth=1, | |
| arrowcolor='red', | |
| showarrow=True | |
| ) | |
| # Calculate aspect ratio for better proportions | |
| lat_range = current_data['latitude'].max() - current_data['latitude'].min() | |
| lon_range = current_data['longitude'].max() - current_data['longitude'].min() | |
| # Update layout with improved sizing | |
| fig.update_layout( | |
| title=f'Ocean Currents - {region}', | |
| xaxis=dict( | |
| title='Longitude', | |
| constrain="domain" | |
| ), | |
| yaxis=dict( | |
| title='Latitude', | |
| constrain="domain" | |
| ), | |
| showlegend=True, | |
| autosize=True, | |
| # Remove fixed dimensions - let it be responsive | |
| margin=dict(l=40, r=40, t=60, b=40), # Smaller margins | |
| # Add responsive config | |
| dragmode='pan', | |
| hovermode='closest' | |
| ) | |
| # Set axis ranges for better proportions | |
| fig.update_xaxes(range=[current_data['longitude'].min(), current_data['longitude'].max()]) | |
| fig.update_yaxes(range=[current_data['latitude'].min(), current_data['latitude'].max()]) | |
| return fig | |
| def get_forecast_data(self, region: str, forecast_hours: int) -> go.Figure: | |
| """Generate forecast visualization with improved sizing""" | |
| # Create time series for forecast | |
| times = [datetime.now() + timedelta(hours=i) for i in range(forecast_hours)] | |
| # Generate sample forecast data | |
| np.random.seed(42) # For reproducible demo | |
| current_speeds = np.random.normal(0.5, 0.2, forecast_hours) | |
| current_speeds = np.maximum(current_speeds, 0) # Ensure non-negative | |
| wave_heights = np.random.normal(1.5, 0.5, forecast_hours) | |
| wave_heights = np.maximum(wave_heights, 0) | |
| wind_speeds = np.random.normal(10, 5, forecast_hours) | |
| wind_speeds = np.maximum(wind_speeds, 0) | |
| # Create subplots for better separation | |
| from plotly.subplots import make_subplots | |
| fig = make_subplots( | |
| rows=3, cols=1, | |
| subplot_titles=('Current Speed (m/s)', 'Wave Height (m)', 'Wind Speed (m/s)'), | |
| vertical_spacing=0.1, | |
| shared_xaxes=True, | |
| specs=[[{"secondary_y": False}], [{"secondary_y": False}], [{"secondary_y": False}]] | |
| ) | |
| # Current Speed subplot | |
| fig.add_trace( | |
| go.Scatter( | |
| x=times, | |
| y=current_speeds, | |
| mode='lines+markers', | |
| name='Current Speed', | |
| line=dict(color='blue', width=2), | |
| marker=dict(size=4) | |
| ), | |
| row=1, col=1 | |
| ) | |
| # Wave Height subplot | |
| fig.add_trace( | |
| go.Scatter( | |
| x=times, | |
| y=wave_heights, | |
| mode='lines+markers', | |
| name='Wave Height', | |
| line=dict(color='green', width=2), | |
| marker=dict(size=4) | |
| ), | |
| row=2, col=1 | |
| ) | |
| # Wind Speed subplot | |
| fig.add_trace( | |
| go.Scatter( | |
| x=times, | |
| y=wind_speeds, | |
| mode='lines+markers', | |
| name='Wind Speed', | |
| line=dict(color='red', width=2), | |
| marker=dict(size=4) | |
| ), | |
| row=3, col=1 | |
| ) | |
| # Update layout with better sizing | |
| fig.update_layout( | |
| title=f'Ocean Forecast - {region}', | |
| showlegend=False, | |
| autosize=True, | |
| margin=dict(l=60, r=50, t=80, b=60), | |
| hovermode='x unified' | |
| ) | |
| # Update x-axis labels | |
| fig.update_xaxes(title_text="Time", row=3, col=1) | |
| # Update y-axis labels | |
| fig.update_yaxes(title_text="Speed (m/s)", row=1, col=1) | |
| fig.update_yaxes(title_text="Height (m)", row=2, col=1) | |
| fig.update_yaxes(title_text="Speed (m/s)", row=3, col=1) | |
| return fig | |
| def analyze_surfing_conditions(self, region: str) -> str: | |
| """Analyze surfing conditions based on current data""" | |
| current_data = self.generate_synthetic_current_data(region, "Medium") | |
| avg_speed = np.mean(current_data['speed']) | |
| max_speed = np.max(current_data['speed']) | |
| # Simple surfing condition analysis | |
| conditions = [] | |
| if avg_speed < 0.3: | |
| conditions.append("Low current speeds - good for beginners") | |
| elif avg_speed < 0.8: | |
| conditions.append("Moderate currents - suitable for intermediate surfers") | |
| else: | |
| conditions.append("Strong currents - experienced surfers only") | |
| if max_speed > 1.0: | |
| conditions.append("🌊 Strong rip currents detected in some areas") | |
| # Add mock weather conditions | |
| conditions.extend([ | |
| f"Water temperature: {20 + np.random.randint(0, 10)}°C", | |
| f"Wind: {5 + np.random.randint(0, 15)} mph offshore", | |
| f"Wave height: {1 + np.random.randint(0, 3)} meters" | |
| ]) | |
| return "\n".join(conditions) | |
| # Initialize the mapper with error handling | |
| try: | |
| mapper = OceanCurrentMapper() | |
| print("Ocean Current Mapper initialized successfully") | |
| except Exception as e: | |
| print(f"Error initializing mapper: {e}") | |
| traceback.print_exc() | |
| # Create wrapper functions with error handling | |
| def create_current_map(region, resolution, show_vectors, show_speed, vector_scale): | |
| try: | |
| return mapper.create_current_map(region, resolution, show_vectors, show_speed, vector_scale) | |
| except Exception as e: | |
| print(f"Error creating current map: {e}") | |
| traceback.print_exc() | |
| # Return empty plot on error | |
| fig = go.Figure() | |
| fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False) | |
| fig.update_layout(autosize=True) | |
| return fig | |
| def create_forecast(region, forecast_hours): | |
| try: | |
| return mapper.get_forecast_data(region, forecast_hours) | |
| except Exception as e: | |
| print(f"Error creating forecast: {e}") | |
| traceback.print_exc() | |
| # Return empty plot on error | |
| fig = go.Figure() | |
| fig.add_annotation(text=f"Error: {str(e)}", x=0.5, y=0.5, showarrow=False) | |
| fig.update_layout(autosize=True) | |
| return fig | |
| def analyze_conditions(region): | |
| try: | |
| return mapper.analyze_surfing_conditions(region) | |
| except Exception as e: | |
| print(f"Error analyzing conditions: {e}") | |
| traceback.print_exc() | |
| return f"Error analyzing conditions: {str(e)}" | |
| # Define the Gradio interface with improved layout | |
| with gr.Blocks(title="Ocean Current Mapper", theme=gr.themes.Ocean()) as demo: | |
| gr.Markdown(""" | |
| <h1 style="font-size: 3em; text-align: center; color: #2E86AB; margin-bottom: 0.5em;"> | |
| Real-Time Ocean Current Mapping Tool | |
| </h1> | |
| <div style="text-align: center; font-size: 1.2em; margin-bottom: 2em;"> | |
| An AI-powered application for visualizing ocean currents, designed for oceanographers and surfers. | |
| </div> | |
| **Features:** | |
| - Real-time current visualization | |
| - Multiple ocean regions | |
| - Forecast capabilities | |
| - Surfing condition analysis | |
| """) | |
| with gr.Tab("Current Map"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| region = gr.Dropdown( | |
| choices=["Gulf of Mexico", "California Coast", "Atlantic Coast", "Global"], | |
| value="Gulf of Mexico", | |
| label="Region" | |
| ) | |
| resolution = gr.Dropdown( | |
| choices=["High", "Medium", "Low"], | |
| value="Medium", | |
| label="Resolution" | |
| ) | |
| show_vectors = gr.Checkbox(label="Show Current Vectors", value=True) | |
| show_speed = gr.Checkbox(label="Show Speed Contours", value=True) | |
| vector_scale = gr.Slider( | |
| minimum=0.1, | |
| maximum=2.0, | |
| value=1.0, | |
| step=0.1, | |
| label="Vector Scale" | |
| ) | |
| update_map = gr.Button("Update Map", variant="primary") | |
| with gr.Column(scale=2): | |
| current_map = gr.Plot( | |
| label="Ocean Current Map", | |
| show_label=False | |
| ) | |
| update_map.click( | |
| fn=create_current_map, | |
| inputs=[region, resolution, show_vectors, show_speed, vector_scale], | |
| outputs=current_map | |
| ) | |
| with gr.Tab("Forecast"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| forecast_region = gr.Dropdown( | |
| choices=["Gulf of Mexico", "California Coast", "Atlantic Coast", "Global"], | |
| value="Gulf of Mexico", | |
| label="Region" | |
| ) | |
| forecast_hours = gr.Slider( | |
| minimum=6, | |
| maximum=72, | |
| value=24, | |
| step=6, | |
| label="Forecast Hours" | |
| ) | |
| update_forecast = gr.Button("Generate Forecast", variant="primary") | |
| with gr.Column(scale=2): | |
| forecast_plot = gr.Plot( | |
| label="Ocean Conditions Forecast", | |
| show_label=False | |
| ) | |
| update_forecast.click( | |
| fn=create_forecast, | |
| inputs=[forecast_region, forecast_hours], | |
| outputs=forecast_plot | |
| ) | |
| with gr.Tab("Surfing Conditions"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| surf_region = gr.Dropdown( | |
| choices=["Gulf of Mexico", "California Coast", "Atlantic Coast"], | |
| value="California Coast", | |
| label="Surfing Region" | |
| ) | |
| analyze_button = gr.Button("Analyze Conditions", variant="primary") | |
| with gr.Column(scale=2): | |
| surf_analysis = gr.Textbox( | |
| label="Surfing Conditions Analysis", | |
| lines=8, | |
| placeholder="Click 'Analyze Conditions' to get surfing recommendations..." | |
| ) | |
| analyze_button.click( | |
| fn=analyze_conditions, | |
| inputs=[surf_region], | |
| outputs=surf_analysis | |
| ) | |
| with gr.Tab("About"): | |
| gr.Markdown(""" | |
| ## About This Application | |
| This Ocean Current Mapper provides real-time visualization and analysis of ocean currents using data from: | |
| - **NOAA Tides & Currents**: Real-time oceanographic observations | |
| - **NASA OSCAR**: Global surface current analyses | |
| - **NOAA Global RTOFS**: Ocean forecast system | |
| ### For Oceanographers: | |
| - High-resolution current maps | |
| - Vector field visualization | |
| - Multi-day forecasting | |
| - Data export capabilities | |
| ### For Surfers: | |
| - Current safety analysis | |
| - Wave and wind conditions | |
| - Rip current warnings | |
| - Beach-specific recommendations | |
| ### Technical Details: | |
| - Built with Gradio for easy deployment | |
| - Hosted on Hugging Face Spaces | |
| - Real-time API integration | |
| - Interactive visualizations with Plotly | |
| **Note**: This demo uses synthetic data for demonstration. In production, it would connect to live oceanographic APIs. | |
| """) | |
| # Launch the app with better error handling | |
| if __name__ == "__main__": | |
| try: | |
| print("Starting Ocean Current Mapper...") | |
| demo.launch( | |
| share=True, | |
| show_error=True, | |
| inbrowser=False, | |
| server_name="0.0.0.0", | |
| server_port=7860 | |
| ) | |
| except Exception as e: | |
| print(f"Error launching app: {e}") | |
| traceback.print_exc() |