Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -353,21 +353,24 @@ class RSM_BoxBehnken:
|
|
| 353 |
|
| 354 |
# ANOVA del modelo simplificado
|
| 355 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
| 356 |
-
|
| 357 |
-
#
|
| 358 |
ss_total = anova_table['sum_sq'].sum()
|
| 359 |
-
|
| 360 |
# Crear tabla de contribuci贸n
|
| 361 |
contribution_table = pd.DataFrame({
|
| 362 |
-
'
|
| 363 |
'Suma de Cuadrados': [],
|
| 364 |
-
'
|
|
|
|
|
|
|
|
|
|
| 365 |
'% Contribuci贸n': []
|
| 366 |
})
|
| 367 |
-
|
| 368 |
# Calcular estad铆sticos F y porcentaje de contribuci贸n para cada factor
|
| 369 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
| 370 |
-
|
| 371 |
for index, row in anova_table.iterrows():
|
| 372 |
if index != 'Residual':
|
| 373 |
factor_name = index
|
|
@@ -377,17 +380,38 @@ class RSM_BoxBehnken:
|
|
| 377 |
factor_name = f'{self.x2_name}^2'
|
| 378 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
| 379 |
factor_name = f'{self.x3_name}^2'
|
| 380 |
-
|
| 381 |
ss_factor = row['sum_sq']
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
| 383 |
contribution_percentage = (ss_factor / ss_total) * 100
|
| 384 |
|
| 385 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 386 |
-
'
|
| 387 |
'Suma de Cuadrados': [ss_factor],
|
| 388 |
-
'
|
|
|
|
|
|
|
|
|
|
| 389 |
'% Contribuci贸n': [contribution_percentage]
|
| 390 |
})], ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
return contribution_table.round(3)
|
| 393 |
|
|
|
|
| 353 |
|
| 354 |
# ANOVA del modelo simplificado
|
| 355 |
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
|
| 356 |
+
|
| 357 |
+
# Suma de cuadrados total
|
| 358 |
ss_total = anova_table['sum_sq'].sum()
|
| 359 |
+
|
| 360 |
# Crear tabla de contribuci贸n
|
| 361 |
contribution_table = pd.DataFrame({
|
| 362 |
+
'Fuente de Variaci贸n': [],
|
| 363 |
'Suma de Cuadrados': [],
|
| 364 |
+
'Grados de Libertad': [],
|
| 365 |
+
'Cuadrado Medio': [],
|
| 366 |
+
'F': [],
|
| 367 |
+
'Valor p': [],
|
| 368 |
'% Contribuci贸n': []
|
| 369 |
})
|
| 370 |
+
|
| 371 |
# Calcular estad铆sticos F y porcentaje de contribuci贸n para cada factor
|
| 372 |
ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
|
| 373 |
+
|
| 374 |
for index, row in anova_table.iterrows():
|
| 375 |
if index != 'Residual':
|
| 376 |
factor_name = index
|
|
|
|
| 380 |
factor_name = f'{self.x2_name}^2'
|
| 381 |
elif factor_name == f'I({self.x3_name} ** 2)':
|
| 382 |
factor_name = f'{self.x3_name}^2'
|
| 383 |
+
|
| 384 |
ss_factor = row['sum_sq']
|
| 385 |
+
df_factor = row['df']
|
| 386 |
+
ms_factor = ss_factor / df_factor
|
| 387 |
+
f_stat = ms_factor / ms_error
|
| 388 |
+
p_value = f.sf(f_stat, df_factor, anova_table.loc['Residual', 'df'])
|
| 389 |
contribution_percentage = (ss_factor / ss_total) * 100
|
| 390 |
|
| 391 |
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 392 |
+
'Fuente de Variaci贸n': [factor_name],
|
| 393 |
'Suma de Cuadrados': [ss_factor],
|
| 394 |
+
'Grados de Libertad': [df_factor],
|
| 395 |
+
'Cuadrado Medio': [ms_factor],
|
| 396 |
+
'F': [f_stat],
|
| 397 |
+
'Valor p': [p_value],
|
| 398 |
'% Contribuci贸n': [contribution_percentage]
|
| 399 |
})], ignore_index=True)
|
| 400 |
+
|
| 401 |
+
# Calcular estad铆stico F global y su valor p
|
| 402 |
+
f_global = anova_table['sum_sq'][:-1].sum() / anova_table['df'][:-1].sum() / ms_error
|
| 403 |
+
p_global = f.sf(f_global, anova_table['df'][:-1].sum(), anova_table.loc['Residual', 'df'])
|
| 404 |
+
|
| 405 |
+
# Agregar fila para el estad铆stico F global
|
| 406 |
+
contribution_table = pd.concat([contribution_table, pd.DataFrame({
|
| 407 |
+
'Fuente de Variaci贸n': ['F global'],
|
| 408 |
+
'Suma de Cuadrados': [np.nan],
|
| 409 |
+
'Grados de Libertad': [np.nan],
|
| 410 |
+
'Cuadrado Medio': [np.nan],
|
| 411 |
+
'F': [f_global],
|
| 412 |
+
'Valor p': [p_global],
|
| 413 |
+
'% Contribuci贸n': [np.nan]
|
| 414 |
+
})], ignore_index=True)
|
| 415 |
|
| 416 |
return contribution_table.round(3)
|
| 417 |
|