import gradio as gr from PIL import Image # Text to Image function with thinking option and hyperparameters def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4, timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0, cfg_renorm_type="global", max_think_token_n=1024, do_sample=False, text_temperature=0.3, seed=0, image_ratio="1:1"): yield None, None # Image Understanding function with thinking option and hyperparameters def image_understanding(image: Image.Image, prompt: str, show_thinking=False, do_sample=False, text_temperature=0.3, max_new_tokens=512): yield None # Image Editing function with thinking option and hyperparameters def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0, cfg_img_scale=2.0, cfg_interval=0.0, timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0, cfg_renorm_type="text_channel", max_think_token_n=1024, do_sample=False, text_temperature=0.3, seed=0): yield (image, image), None # Helper function to load example images def load_example_image(image_path): try: return Image.open(image_path) except Exception as e: print(f"Error loading example image: {e}") return None # Gradio UI with gr.Blocks() as demo: gr.Markdown("""
BAGEL
""") with gr.Tab("📝 Text to Image"): txt_input = gr.Textbox( label="Prompt", value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere." ) with gr.Row(): show_thinking = gr.Checkbox(label="Thinking", value=False) # Add hyperparameter controls in an accordion with gr.Accordion("Inference Hyperparameters", open=False): # 参数一排两个布局 with gr.Group(): with gr.Row(): seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed", info="0 for random seed, positive for reproducible results") image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], value="1:1", label="Image Ratio", info="The longer size is fixed to 1024") with gr.Row(): cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True, label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)") cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)") with gr.Row(): cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], value="global", label="CFG Renorm Type", info="If the genrated image is blurry, use 'global'") cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="CFG Renorm Min", info="1.0 disables CFG-Renorm") with gr.Row(): num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True, label="Timesteps", info="Total denoising steps") timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True, label="Timestep Shift", info="Higher values for layout, lower for details") # Thinking parameters in a single row thinking_params = gr.Group(visible=False) with thinking_params: with gr.Row(): do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation") max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True, label="Max Think Tokens", info="Maximum number of tokens for thinking") text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True, label="Temperature", info="Controls randomness in text generation") thinking_output = gr.Textbox(label="Thinking Process", visible=False) img_output = gr.Image(label="Generated Image") gen_btn = gr.Button("Generate", variant="primary") # Dynamically show/hide thinking process box and parameters def update_thinking_visibility(show): return gr.update(visible=show), gr.update(visible=show) show_thinking.change( fn=update_thinking_visibility, inputs=[show_thinking], outputs=[thinking_output, thinking_params] ) gr.on( triggers=[gen_btn.click, txt_input.submit], fn=text_to_image, inputs=[ txt_input, show_thinking, cfg_text_scale, cfg_interval, timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type, max_think_token_n, do_sample, text_temperature, seed, image_ratio ], outputs=[img_output, thinking_output] ) with gr.Tab("🖌️ Image Edit"): with gr.Row(): with gr.Column(scale=1): edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg')) edit_prompt = gr.Textbox( label="Prompt", value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes." ) with gr.Column(scale=1): edit_image_output = gr.ImageSlider(label="Result") edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False) with gr.Row(): edit_show_thinking = gr.Checkbox(label="Thinking", value=False) # Add hyperparameter controls in an accordion with gr.Accordion("Inference Hyperparameters", open=False): with gr.Group(): with gr.Row(): edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True, label="Seed", info="0 for random seed, positive for reproducible results") edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True, label="CFG Text Scale", info="Controls how strongly the model follows the text prompt") with gr.Row(): edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True, label="CFG Image Scale", info="Controls how much the model preserves input image details") edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)") with gr.Row(): edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], value="text_channel", label="CFG Renorm Type", info="If the genrated image is blurry, use 'global") edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True, label="CFG Renorm Min", info="1.0 disables CFG-Renorm") with gr.Row(): edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True, label="Timesteps", info="Total denoising steps") edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True, label="Timestep Shift", info="Higher values for layout, lower for details") # Thinking parameters in a single row edit_thinking_params = gr.Group(visible=False) with edit_thinking_params: with gr.Row(): edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation") edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True, label="Max Think Tokens", info="Maximum number of tokens for thinking") edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True, label="Temperature", info="Controls randomness in text generation") edit_btn = gr.Button("Submit", variant="primary") # Dynamically show/hide thinking process box for editing def update_edit_thinking_visibility(show): return gr.update(visible=show), gr.update(visible=show) edit_show_thinking.change( fn=update_edit_thinking_visibility, inputs=[edit_show_thinking], outputs=[edit_thinking_output, edit_thinking_params] ) gr.on( triggers=[edit_btn.click, edit_prompt.submit], fn=edit_image, inputs=[ edit_image_input, edit_prompt, edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed ], outputs=[edit_image_output, edit_thinking_output] ) with gr.Tab("🖼️ Image Understanding"): with gr.Row(): with gr.Column(scale=1): img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg')) understand_prompt = gr.Textbox( label="Prompt", value="Can someone explain what's funny about this meme??" ) with gr.Column(scale=1): txt_output = gr.Textbox(label="Result", lines=20) with gr.Row(): understand_show_thinking = gr.Checkbox(label="Thinking", value=False) # Add hyperparameter controls in an accordion with gr.Accordion("Inference Hyperparameters", open=False): with gr.Row(): understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation") understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True, label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)") understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True, label="Max New Tokens", info="Maximum length of generated text, including potential thinking") img_understand_btn = gr.Button("Submit", variant="primary") gr.on( triggers=[img_understand_btn.click, understand_prompt.submit], fn=image_understanding, inputs=[ img_input, understand_prompt, understand_show_thinking, understand_do_sample, understand_text_temperature, understand_max_new_tokens ], outputs=txt_output ) gr.Markdown("""
BAGEL Website BAGEL Paper on arXiv BAGEL on Hugging Face BAGEL Demo BAGEL Discord BAGEL Email
""") demo.launch()