Bluestrike commited on
Commit
119b40d
·
verified ·
1 Parent(s): e45023f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -150
app.py CHANGED
@@ -1,154 +1,52 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
-
153
- if __name__ == "__main__":
154
- demo.launch()
 
 
 
 
 
 
 
1
  import torch
2
+ from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel
3
+ from huggingface_hub import hf_hub_download
4
+ from safetensors.torch import load_file
5
+ import gradio as gr
6
 
7
+ # Model details
8
+ base_model = "stabilityai/stable-diffusion-xl-base-1.0"
9
+ lightning_repo = "ByteDance/SDXL-Lightning"
10
+ checkpoint_file = "sdxl_lightning_4step_unet.safetensors"
11
+
12
+ # Load custom UNet with Lightning weights
13
+ print("Loading UNet...")
14
+ unet = UNet2DConditionModel.from_config(base_model, subfolder="unet")
15
+ unet.load_state_dict(load_file(hf_hub_download(lightning_repo, checkpoint_file)))
16
+ unet.eval()
17
+
18
+ # Load full SDXL pipeline using the modified UNet
19
+ print("Initializing pipeline...")
20
+ pipe = StableDiffusionXLPipeline.from_pretrained(
21
+ base_model,
22
+ unet=unet,
23
+ torch_dtype=torch.float16
24
+ )
25
+ pipe.to("cuda" if torch.cuda.is_available() else "cpu")
26
+
27
+ # Image generation function
28
+ def generate(prompt):
29
+ image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
30
+ return image
31
+
32
+ # Example prompts
33
+ example_prompts = [
34
+ "A futuristic city skyline at sunset, ultra-detailed, sci-fi style",
35
+ "An astronaut riding a horse on Mars, digital art",
36
+ "A serene forest landscape with glowing mushrooms, fantasy art",
37
+ "Cyberpunk samurai standing under neon lights in the rain",
38
+ "Cute robot cooking in a cozy kitchen, Pixar style"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ]
40
 
41
+ # Gradio UI setup
42
+ interface = gr.Interface(
43
+ fn=generate,
44
+ inputs=gr.Textbox(label="Enter your prompt"),
45
+ outputs=gr.Image(type="pil"),
46
+ title="ByteDance SDXL-Lightning 4-Step Image Generator",
47
+ description="Ultra-fast AI image generation using 4-step SDXL-Lightning by ByteDance.",
48
+ examples=example_prompts
49
+ )
50
+
51
+ # Launch the public app
52
+ interface.launch()