Nick088's picture
Update app.py
dc61e08 verified
raw
history blame
18.3 kB
import os
import subprocess
import random
import numpy as np
import json
from datetime import timedelta
import tempfile
import gradio as gr
from groq import Groq
client = Groq(api_key=os.environ.get("Groq_Api_Key"))
# llms
MAX_SEED = np.iinfo(np.int32).max
def update_max_tokens(model):
if model in ["llama3-70b-8192", "llama3-8b-8192", "gemma-7b-it", "gemma2-9b-it"]:
return gr.update(maximum=8192)
elif model == "mixtral-8x7b-32768":
return gr.update(maximum=32768)
def create_history_messages(history):
history_messages = [{"role": "user", "content": m[0]} for m in history]
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
return history_messages
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
messages = create_history_messages(history)
messages.append({"role": "user", "content": prompt})
print(messages)
if seed == 0:
seed = random.randint(1, MAX_SEED)
stream = client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
seed=seed,
stop=None,
stream=True,
)
response = ""
for chunk in stream:
delta_content = chunk.choices[0].delta.content
if delta_content is not None:
response += delta_content
yield response
return response
# speech to text
ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
MAX_FILE_SIZE_MB = 25
LANGUAGE_CODES = {
"English": "en",
"Chinese": "zh",
"German": "de",
"Spanish": "es",
"Russian": "ru",
"Korean": "ko",
"French": "fr",
"Japanese": "ja",
"Portuguese": "pt",
"Turkish": "tr",
"Polish": "pl",
"Catalan": "ca",
"Dutch": "nl",
"Arabic": "ar",
"Swedish": "sv",
"Italian": "it",
"Indonesian": "id",
"Hindi": "hi",
"Finnish": "fi",
"Vietnamese": "vi",
"Hebrew": "he",
"Ukrainian": "uk",
"Greek": "el",
"Malay": "ms",
"Czech": "cs",
"Romanian": "ro",
"Danish": "da",
"Hungarian": "hu",
"Tamil": "ta",
"Norwegian": "no",
"Thai": "th",
"Urdu": "ur",
"Croatian": "hr",
"Bulgarian": "bg",
"Lithuanian": "lt",
"Latin": "la",
"Māori": "mi",
"Malayalam": "ml",
"Welsh": "cy",
"Slovak": "sk",
"Telugu": "te",
"Persian": "fa",
"Latvian": "lv",
"Bengali": "bn",
"Serbian": "sr",
"Azerbaijani": "az",
"Slovenian": "sl",
"Kannada": "kn",
"Estonian": "et",
"Macedonian": "mk",
"Breton": "br",
"Basque": "eu",
"Icelandic": "is",
"Armenian": "hy",
"Nepali": "ne",
"Mongolian": "mn",
"Bosnian": "bs",
"Kazakh": "kk",
"Albanian": "sq",
"Swahili": "sw",
"Galician": "gl",
"Marathi": "mr",
"Panjabi": "pa",
"Sinhala": "si",
"Khmer": "km",
"Shona": "sn",
"Yoruba": "yo",
"Somali": "so",
"Afrikaans": "af",
"Occitan": "oc",
"Georgian": "ka",
"Belarusian": "be",
"Tajik": "tg",
"Sindhi": "sd",
"Gujarati": "gu",
"Amharic": "am",
"Yiddish": "yi",
"Lao": "lo",
"Uzbek": "uz",
"Faroese": "fo",
"Haitian": "ht",
"Pashto": "ps",
"Turkmen": "tk",
"Norwegian Nynorsk": "nn",
"Maltese": "mt",
"Sanskrit": "sa",
"Luxembourgish": "lb",
"Burmese": "my",
"Tibetan": "bo",
"Tagalog": "tl",
"Malagasy": "mg",
"Assamese": "as",
"Tatar": "tt",
"Hawaiian": "haw",
"Lingala": "ln",
"Hausa": "ha",
"Bashkir": "ba",
"jw": "jw",
"Sundanese": "su",
}
# Checks file extension, size, and downsamples if needed.
def check_file(audio_file_path):
if not audio_file_path:
return None, gr.Error("Please upload an audio file.")
file_size_mb = os.path.getsize(audio_file_path) / (1024 * 1024)
file_extension = audio_file_path.split(".")[-1].lower()
if file_extension not in ALLOWED_FILE_EXTENSIONS:
return (
None,
gr.Error(
f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}"
),
)
if file_size_mb > MAX_FILE_SIZE_MB:
gr.Warning(
f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz. Maximum allowed: {MAX_FILE_SIZE_MB} MB"
)
output_file_path = os.path.splitext(audio_file_path)[0] + "_downsampled.wav"
try:
subprocess.run(
[
"ffmpeg",
"-i",
audio_file_path,
"-ar",
"16000",
"-ac",
"1",
"-map",
"0:a:",
output_file_path,
],
check=True,
)
# Check size after downsampling
downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
if downsampled_size_mb > MAX_FILE_SIZE_MB:
return (
None,
gr.Error(
f"File size still too large after downsampling ({downsampled_size_mb:.2f} MB). Maximum allowed: {MAX_FILE_SIZE_MB} MB"
),
)
return output_file_path, None
except subprocess.CalledProcessError as e:
return None, gr.Error(f"Error during downsampling: {e}")
return audio_file_path, None
def transcribe_audio(audio_file_path, prompt, language, auto_detect_language, model):
# Check and process the file first
processed_path, error_message = check_file(audio_file_path)
# If there's an error during file check
if error_message:
return error_message
with open(processed_path, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(os.path.basename(processed_path), file.read()),
model=model,
prompt=prompt,
response_format="json",
language=None if auto_detect_language else language,
temperature=0.0,
)
return transcription.text
def translate_audio(audio_file_path, prompt, model):
# Check and process the file first
processed_path, error_message = check_file(audio_file_path)
# If there's an error during file check
if error_message:
return error_message
with open(processed_path, "rb") as file:
translation = client.audio.translations.create(
file=(os.path.basename(processed_path), file.read()),
model=model,
prompt=prompt,
response_format="json",
temperature=0.0,
)
return translation.text
# subtitles maker
# helper function convert json transcription to srt
def create_srt_from_text(transcription_text):
srt_lines = []
# Assuming no timestamps, we'll assign a default duration of 1 second to each line
duration = timedelta(seconds=1)
text_parts = transcription_text.split(".") # Split by periods to separate sentences
start_time = timedelta(seconds=0)
for i, text_part in enumerate(text_parts):
text_part = text_part.strip()
if text_part: # Only add lines with text
# Format timestamps correctly
start_timestamp = f"{start_time.seconds}:{start_time.microseconds // 1000:03}"
end_timestamp = f"{(start_time + duration).seconds}:{(start_time + duration).microseconds // 1000:03}"
srt_lines.append(f"{i+1}\n{start_timestamp} --> {end_timestamp}\n{text_part.strip()}\n\n")
start_time += duration
return "".join(srt_lines)
# getting transcription + using helper function + adding subs to video if input is video
def generate_subtitles(audio_file_path, prompt, language, auto_detect_language, model):
# Check and process the file first
processed_path, error_message = check_file(audio_file_path)
# If there's an error during file check
if error_message:
return error_message, None, None
with open(processed_path, "rb") as file:
transcription_json = client.audio.transcriptions.create(
file=(os.path.basename(processed_path), file.read()),
model=model,
prompt=prompt,
response_format="json",
language=None if auto_detect_language else language, # Conditional language parameter
temperature=0.0,
)
# Convert the Transcription object to a dictionary
transcription_json = json.loads(transcription_json.to_json())
transcription_text = transcription_json['text']
srt_content = create_srt_from_text(transcription_text)
# Create a temporary file for SRT content
with tempfile.NamedTemporaryFile(mode="w", suffix=".srt", delete=False) as temp_srt_file:
temp_srt_path = temp_srt_file.name
temp_srt_file.write(srt_content)
# Generate subtitles and add to video if input is video
if audio_file_path.lower().endswith((".mp4", ".webm")):
try:
# Use ffmpeg to add subtitles to the video
output_file_path = audio_file_path.replace(os.path.splitext(audio_file_path)[1], "_with_subs" + os.path.splitext(audio_file_path)[1])
subprocess.run(
[
"ffmpeg",
"-i",
audio_file_path,
"-i",
temp_srt_path,
"-map",
"0:v",
"-map",
"0:a",
"-map",
"1",
"-c:v",
"copy",
"-c:a",
"copy",
"-c:s",
"mov_text",
"-metadata:s:s:0",
"language=eng",
output_file_path,
],
check=True,
)
return None, output_file_path, None
except subprocess.CalledProcessError as e:
return None, None, gr.Error(f"Error during subtitle addition: {e}")
return temp_srt_path, None, None
with gr.Blocks() as demo:
gr.Markdown(
"""
# Groq API UI
Inference by Groq
Hugging Face Space by [Nick088](https://linktr.ee/Nick088)
"""
)
with gr.Tabs():
with gr.TabItem("LLMs"):
with gr.Row():
with gr.Column(scale=1, min_width=250):
model = gr.Dropdown(
choices=[
"llama3-70b-8192",
"llama3-8b-8192",
"mixtral-8x7b-32768",
"gemma-7b-it",
"gemma2-9b-it",
],
value="llama3-70b-8192",
label="Model",
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Temperature",
info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative.",
)
max_tokens = gr.Slider(
minimum=1,
maximum=8192,
step=1,
value=4096,
label="Max Tokens",
info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b.",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Top P",
info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p.",
)
seed = gr.Number(
precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random"
)
model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
with gr.Column(scale=1, min_width=400):
chatbot = gr.ChatInterface(
fn=generate_response,
chatbot=None,
additional_inputs=[
model,
temperature,
max_tokens,
top_p,
seed,
],
)
model.change(update_max_tokens, inputs=[model], outputs=max_tokens)
with gr.TabItem("Speech To Text"):
with gr.Tabs():
with gr.TabItem("Transcription"):
gr.Markdown("Transcript audio from files to text!")
with gr.Row():
audio_input = gr.File(
type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
)
model_choice_transcribe = gr.Dropdown(
choices=["whisper-large-v3"], # Only include 'whisper-large-v3'
value="whisper-large-v3",
label="Model",
)
with gr.Row():
transcribe_prompt = gr.Textbox(
label="Prompt (Optional)",
info="Specify any context or spelling corrections.",
)
with gr.Column():
language = gr.Dropdown(
choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()],
value="en",
label="Language",
)
auto_detect_language = gr.Checkbox(label="Auto Detect Language")
transcribe_button = gr.Button("Transcribe")
transcription_output = gr.Textbox(label="Transcription")
transcribe_button.click(
transcribe_audio,
inputs=[audio_input, transcribe_prompt, language, auto_detect_language, model_choice_transcribe],
outputs=transcription_output,
)
with gr.TabItem("Translation"):
gr.Markdown("Transcript audio from files and translate them to English text!")
with gr.Row():
audio_input_translate = gr.File(
type="filepath", label="Upload File containing Audio", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS]
)
model_choice_translate = gr.Dropdown(
choices=["whisper-large-v3"], # Only include 'whisper-large-v3'
value="whisper-large-v3",
label="Model",
)
with gr.Row():
translate_prompt = gr.Textbox(
label="Prompt (Optional)",
info="Specify any context or spelling corrections.",
)
translate_button = gr.Button("Translate")
translation_output = gr.Textbox(label="Translation")
translate_button.click(
translate_audio,
inputs=[audio_input_translate, translate_prompt, model_choice_translate],
outputs=translation_output,
)
with gr.TabItem("Subtitle Maker"):
with gr.Row():
audio_input_subtitles = gr.File(
label="Upload Audio/Video",
file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS],
)
model_choice_subtitles = gr.Dropdown(
choices=["whisper-large-v3"], # Only include 'whisper-large-v3'
value="whisper-large-v3",
label="Model",
)
transcribe_prompt_subtitles = gr.Textbox(
label="Prompt (Optional)",
info="Specify any context or spelling corrections.",
)
with gr.Row():
language_subtitles = gr.Dropdown(
choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()],
value="en",
label="Language",
)
auto_detect_language_subtitles = gr.Checkbox(
label="Auto Detect Language"
)
transcribe_button_subtitles = gr.Button("Generate Subtitles")
srt_output = gr.File(label="SRT Output File")
video_output = gr.File(label="Output Video with Subtitles")
transcribe_button_subtitles.click(
generate_subtitles,
inputs=[
audio_input_subtitles,
transcribe_prompt_subtitles,
language_subtitles,
auto_detect_language_subtitles,
model_choice_subtitles,
],
outputs=[srt_output, video_output, gr.Textbox(label="Error")],
)
demo.launch()