Spaces:
Paused
Paused
File size: 6,417 Bytes
9551276 3be135a 0db7793 5e72808 0db7793 14f07e7 2bcefc7 0db7793 3be135a 14f07e7 5e72808 3be135a 0db7793 5e72808 2bcefc7 110c323 bb25d5e 5e72808 e42b84a 5d31a12 5e72808 0db7793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import random
import gradio as gr
from groq import Groq
client = Groq(api_key=os.environ.get("Groq_Api_Key"))
def create_history_messages(history):
history_messages = [{"role": "user", "content": m[0]} for m in history]
history_messages.extend([{"role": "assistant", "content": m[1]} for m in history])
return history_messages
def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed):
messages = create_history_messages(history)
messages.append({"role": "user", "content": prompt})
print(messages)
if seed == 0:
seed = random.randint(1, 2**32-1)
stream = client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
seed=seed,
stop=None,
stream=True,
)
response = ""
for chunk in stream:
delta_content = chunk.choices[0].delta.content
if delta_content is not None:
response += delta_content
yield response
return response
def transcribe_audio(audio_file, prompt, language):
with open(audio_file.name, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(audio_file.name, file.read()),
model="whisper-large-v3",
prompt=prompt,
response_format="json",
language=language,
temperature=0.0,
)
return transcription.text
def translate_audio(audio_file, prompt):
with open(audio_file.name, "rb") as file:
translation = client.audio.translations.create(
file=(audio_file.name, file.read()),
model="whisper-large-v3",
prompt=prompt,
response_format="json",
temperature=0.0,
)
return translation.text
with gr.Blocks() as demo:
gr.Markdown(
"""
# Groq API UI
Inference by Groq. Hugging Face Space by [Nick088](https://linktr.ee/Nick088)
"""
)
with gr.Tabs():
with gr.TabItem("LLMs"):
with gr.Row():
with gr.Column():
model = gr.Dropdown(
choices=[
"llama3-70b-8192",
"llama3-8b-8192",
"mixtral-8x7b-32768",
"gemma-7b-it",
"gemma2-9b-it",
],
value="llama3-70b-8192",
label="Model",
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Temperature",
info="Controls diversity of the generated text. Lower is more deterministic, higher is more creative.",
)
max_tokens = gr.Slider(
minimum=1,
maximum=32192,
step=1,
value=4096,
label="Max Tokens",
info="The maximum number of tokens that the model can process in a single response.<br>Maximums: 8k for gemma 7b it, gemma2 9b it, llama 7b & 70b, 32k for mixtral 8x7b.",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.5,
label="Top P",
info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p.",
)
seed = gr.Number(
precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random"
)
with gr.Column():
chatbot = gr.ChatInterface(
fn=generate_response,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=[model, temperature, max_tokens, top_p, seed],
)
with gr.TabItem("Whisper"):
with gr.Tabs():
with gr.TabItem("Transcription"):
with gr.Row():
audio_input = gr.Audio(
source="upload", type="filepath", label="Upload Audio"
)
transcribe_prompt = gr.Textbox(
label="Prompt (Optional)",
info="Specify any context or spelling corrections.",
)
language = gr.Dropdown(
choices=["en", "es", "fr", "de", "zh", "ja", "ko"], # Add more language codes as needed
value="en",
label="Language",
)
transcribe_button = gr.Button("Transcribe")
transcription_output = gr.Textbox(label="Transcription")
transcribe_button.click(
transcribe_audio,
inputs=[audio_input, transcribe_prompt, language],
outputs=transcription_output,
)
with gr.TabItem("Translation"):
with gr.Row():
audio_input_translate = gr.Audio(
source="upload", type="filepath", label="Upload Audio"
)
translate_prompt = gr.Textbox(
label="Prompt (Optional)",
info="Specify any context or spelling corrections.",
)
translate_button = gr.Button("Translate")
translation_output = gr.Textbox(label="Translation")
translate_button.click(
translate_audio,
inputs=[audio_input_translate, translate_prompt],
outputs=translation_output,
)
demo.launch() |