|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import print_function |
|
|
|
import argparse |
|
import copy |
|
import logging |
|
import os |
|
import sys |
|
|
|
import torch |
|
import yaml |
|
from torch.utils.data import DataLoader |
|
|
|
from wenet.dataset.dataset import Dataset |
|
from wenet.paraformer.search.beam_search import build_beam_search |
|
from wenet.utils.checkpoint import load_checkpoint |
|
from wenet.utils.file_utils import read_symbol_table, read_non_lang_symbols |
|
from wenet.utils.config import override_config |
|
from wenet.utils.init_model import init_model |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser(description="recognize with your model") |
|
parser.add_argument("--config", required=True, help="config file") |
|
parser.add_argument("--test_data", required=True, help="test data file") |
|
parser.add_argument( |
|
"--data_type", |
|
default="raw", |
|
choices=["raw", "shard"], |
|
help="train and cv data type", |
|
) |
|
parser.add_argument( |
|
"--gpu", type=int, default=-1, help="gpu id for this rank, -1 for cpu" |
|
) |
|
parser.add_argument("--checkpoint", required=True, help="checkpoint model") |
|
parser.add_argument("--dict", required=True, help="dict file") |
|
parser.add_argument( |
|
"--non_lang_syms", help="non-linguistic symbol file. One symbol per line." |
|
) |
|
parser.add_argument( |
|
"--beam_size", type=int, default=10, help="beam size for search" |
|
) |
|
parser.add_argument("--penalty", type=float, default=0.0, help="length penalty") |
|
parser.add_argument("--result_file", required=True, help="asr result file") |
|
parser.add_argument("--batch_size", type=int, default=16, help="asr result file") |
|
parser.add_argument( |
|
"--mode", |
|
choices=[ |
|
"attention", |
|
"ctc_greedy_search", |
|
"ctc_prefix_beam_search", |
|
"attention_rescoring", |
|
"rnnt_greedy_search", |
|
"rnnt_beam_search", |
|
"rnnt_beam_attn_rescoring", |
|
"ctc_beam_td_attn_rescoring", |
|
"hlg_onebest", |
|
"hlg_rescore", |
|
"paraformer_greedy_search", |
|
"paraformer_beam_search", |
|
], |
|
default="attention", |
|
help="decoding mode", |
|
) |
|
|
|
parser.add_argument( |
|
"--search_ctc_weight", |
|
type=float, |
|
default=1.0, |
|
help="ctc weight for nbest generation", |
|
) |
|
parser.add_argument( |
|
"--search_transducer_weight", |
|
type=float, |
|
default=0.0, |
|
help="transducer weight for nbest generation", |
|
) |
|
parser.add_argument( |
|
"--ctc_weight", |
|
type=float, |
|
default=0.0, |
|
help="ctc weight for rescoring weight in \ |
|
attention rescoring decode mode \ |
|
ctc weight for rescoring weight in \ |
|
transducer attention rescore decode mode", |
|
) |
|
|
|
parser.add_argument( |
|
"--transducer_weight", |
|
type=float, |
|
default=0.0, |
|
help="transducer weight for rescoring weight in " |
|
"transducer attention rescore mode", |
|
) |
|
parser.add_argument( |
|
"--attn_weight", |
|
type=float, |
|
default=0.0, |
|
help="attention weight for rescoring weight in " |
|
"transducer attention rescore mode", |
|
) |
|
parser.add_argument( |
|
"--decoding_chunk_size", |
|
type=int, |
|
default=-1, |
|
help="""decoding chunk size, |
|
<0: for decoding, use full chunk. |
|
>0: for decoding, use fixed chunk size as set. |
|
0: used for training, it's prohibited here""", |
|
) |
|
parser.add_argument( |
|
"--num_decoding_left_chunks", |
|
type=int, |
|
default=-1, |
|
help="number of left chunks for decoding", |
|
) |
|
parser.add_argument( |
|
"--simulate_streaming", action="store_true", help="simulate streaming inference" |
|
) |
|
parser.add_argument( |
|
"--reverse_weight", |
|
type=float, |
|
default=0.0, |
|
help="""right to left weight for attention rescoring |
|
decode mode""", |
|
) |
|
parser.add_argument( |
|
"--bpe_model", default=None, type=str, help="bpe model for english part" |
|
) |
|
parser.add_argument( |
|
"--override_config", action="append", default=[], help="override yaml config" |
|
) |
|
parser.add_argument( |
|
"--connect_symbol", |
|
default="", |
|
type=str, |
|
help="used to connect the output characters", |
|
) |
|
|
|
parser.add_argument( |
|
"--word", default="", type=str, help="word file, only used for hlg decode" |
|
) |
|
parser.add_argument( |
|
"--hlg", default="", type=str, help="hlg file, only used for hlg decode" |
|
) |
|
parser.add_argument( |
|
"--lm_scale", |
|
type=float, |
|
default=0.0, |
|
help="lm scale for hlg attention rescore decode", |
|
) |
|
parser.add_argument( |
|
"--decoder_scale", |
|
type=float, |
|
default=0.0, |
|
help="lm scale for hlg attention rescore decode", |
|
) |
|
parser.add_argument( |
|
"--r_decoder_scale", |
|
type=float, |
|
default=0.0, |
|
help="lm scale for hlg attention rescore decode", |
|
) |
|
|
|
args = parser.parse_args() |
|
print(args) |
|
return args |
|
|
|
|
|
def main(): |
|
args = get_args() |
|
logging.basicConfig( |
|
level=logging.DEBUG, format="%(asctime)s %(levelname)s %(message)s" |
|
) |
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) |
|
|
|
if ( |
|
args.mode |
|
in [ |
|
"ctc_prefix_beam_search", |
|
"attention_rescoring", |
|
"paraformer_beam_search", |
|
] |
|
and args.batch_size > 1 |
|
): |
|
logging.fatal( |
|
"decoding mode {} must be running with batch_size == 1".format(args.mode) |
|
) |
|
sys.exit(1) |
|
|
|
with open(args.config, "r") as fin: |
|
configs = yaml.load(fin, Loader=yaml.FullLoader) |
|
if len(args.override_config) > 0: |
|
configs = override_config(configs, args.override_config) |
|
|
|
symbol_table = read_symbol_table(args.dict) |
|
test_conf = copy.deepcopy(configs["dataset_conf"]) |
|
|
|
test_conf["filter_conf"]["max_length"] = 102400 |
|
test_conf["filter_conf"]["min_length"] = 0 |
|
test_conf["filter_conf"]["token_max_length"] = 102400 |
|
test_conf["filter_conf"]["token_min_length"] = 0 |
|
test_conf["filter_conf"]["max_output_input_ratio"] = 102400 |
|
test_conf["filter_conf"]["min_output_input_ratio"] = 0 |
|
test_conf["speed_perturb"] = False |
|
test_conf["spec_aug"] = False |
|
test_conf["spec_sub"] = False |
|
test_conf["spec_trim"] = False |
|
test_conf["shuffle"] = False |
|
test_conf["sort"] = False |
|
if "fbank_conf" in test_conf: |
|
test_conf["fbank_conf"]["dither"] = 0.0 |
|
elif "mfcc_conf" in test_conf: |
|
test_conf["mfcc_conf"]["dither"] = 0.0 |
|
test_conf["batch_conf"]["batch_type"] = "static" |
|
test_conf["batch_conf"]["batch_size"] = args.batch_size |
|
non_lang_syms = read_non_lang_symbols(args.non_lang_syms) |
|
|
|
test_dataset = Dataset( |
|
args.data_type, |
|
args.test_data, |
|
symbol_table, |
|
test_conf, |
|
args.bpe_model, |
|
non_lang_syms, |
|
partition=False, |
|
) |
|
|
|
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0) |
|
|
|
|
|
model = init_model(configs) |
|
|
|
|
|
char_dict = {v: k for k, v in symbol_table.items()} |
|
eos = len(char_dict) - 1 |
|
|
|
load_checkpoint(model, args.checkpoint) |
|
use_cuda = args.gpu >= 0 and torch.cuda.is_available() |
|
device = torch.device("cuda" if use_cuda else "cpu") |
|
model = model.to(device) |
|
|
|
model.eval() |
|
|
|
|
|
if args.mode == "paraformer_beam_search": |
|
paraformer_beam_search = build_beam_search(model, args, device) |
|
else: |
|
paraformer_beam_search = None |
|
|
|
with torch.no_grad(), open(args.result_file, "w") as fout: |
|
for batch_idx, batch in enumerate(test_data_loader): |
|
keys, feats, target, feats_lengths, target_lengths = batch |
|
feats = feats.to(device) |
|
target = target.to(device) |
|
feats_lengths = feats_lengths.to(device) |
|
target_lengths = target_lengths.to(device) |
|
if args.mode == "attention": |
|
hyps, _ = model.recognize( |
|
feats, |
|
feats_lengths, |
|
beam_size=args.beam_size, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
) |
|
hyps = [hyp.tolist() for hyp in hyps] |
|
elif args.mode == "ctc_greedy_search": |
|
hyps, _ = model.ctc_greedy_search( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
) |
|
elif args.mode == "rnnt_greedy_search": |
|
assert feats.size(0) == 1 |
|
assert "predictor" in configs |
|
hyps = model.greedy_search( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
) |
|
elif args.mode == "rnnt_beam_search": |
|
assert feats.size(0) == 1 |
|
assert "predictor" in configs |
|
hyps = model.beam_search( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
beam_size=args.beam_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
ctc_weight=args.search_ctc_weight, |
|
transducer_weight=args.search_transducer_weight, |
|
) |
|
elif args.mode == "rnnt_beam_attn_rescoring": |
|
assert feats.size(0) == 1 |
|
assert "predictor" in configs |
|
hyps = model.transducer_attention_rescoring( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
beam_size=args.beam_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
ctc_weight=args.ctc_weight, |
|
transducer_weight=args.transducer_weight, |
|
attn_weight=args.attn_weight, |
|
reverse_weight=args.reverse_weight, |
|
search_ctc_weight=args.search_ctc_weight, |
|
search_transducer_weight=args.search_transducer_weight, |
|
) |
|
elif args.mode == "ctc_beam_td_attn_rescoring": |
|
assert feats.size(0) == 1 |
|
assert "predictor" in configs |
|
hyps = model.transducer_attention_rescoring( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
beam_size=args.beam_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
ctc_weight=args.ctc_weight, |
|
transducer_weight=args.transducer_weight, |
|
attn_weight=args.attn_weight, |
|
reverse_weight=args.reverse_weight, |
|
search_ctc_weight=args.search_ctc_weight, |
|
search_transducer_weight=args.search_transducer_weight, |
|
beam_search_type="ctc", |
|
) |
|
|
|
|
|
|
|
elif args.mode == "ctc_prefix_beam_search": |
|
assert feats.size(0) == 1 |
|
hyp, _ = model.ctc_prefix_beam_search( |
|
feats, |
|
feats_lengths, |
|
args.beam_size, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
) |
|
hyps = [hyp] |
|
elif args.mode == "attention_rescoring": |
|
assert feats.size(0) == 1 |
|
hyp, _ = model.attention_rescoring( |
|
feats, |
|
feats_lengths, |
|
args.beam_size, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
ctc_weight=args.ctc_weight, |
|
simulate_streaming=args.simulate_streaming, |
|
reverse_weight=args.reverse_weight, |
|
) |
|
hyps = [hyp] |
|
elif args.mode == "hlg_onebest": |
|
hyps = model.hlg_onebest( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
hlg=args.hlg, |
|
word=args.word, |
|
symbol_table=symbol_table, |
|
) |
|
elif args.mode == "hlg_rescore": |
|
hyps = model.hlg_rescore( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
lm_scale=args.lm_scale, |
|
decoder_scale=args.decoder_scale, |
|
r_decoder_scale=args.r_decoder_scale, |
|
hlg=args.hlg, |
|
word=args.word, |
|
symbol_table=symbol_table, |
|
) |
|
elif args.mode == "paraformer_beam_search": |
|
hyps = model.paraformer_beam_search( |
|
feats, |
|
feats_lengths, |
|
beam_search=paraformer_beam_search, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
) |
|
elif args.mode == "paraformer_greedy_search": |
|
hyps = model.paraformer_greedy_search( |
|
feats, |
|
feats_lengths, |
|
decoding_chunk_size=args.decoding_chunk_size, |
|
num_decoding_left_chunks=args.num_decoding_left_chunks, |
|
simulate_streaming=args.simulate_streaming, |
|
) |
|
for i, key in enumerate(keys): |
|
content = [] |
|
for w in hyps[i]: |
|
if w == eos: |
|
break |
|
content.append(char_dict[w]) |
|
logging.info("{} {}".format(key, args.connect_symbol.join(content))) |
|
fout.write("{} {}\n".format(key, args.connect_symbol.join(content))) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|