|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import print_function |
|
|
|
import argparse |
|
import os |
|
import sys |
|
|
|
import torch |
|
import yaml |
|
import logging |
|
|
|
import torch.nn.functional as F |
|
from wenet.utils.checkpoint import load_checkpoint |
|
from wenet.transformer.ctc import CTC |
|
from wenet.transformer.decoder import TransformerDecoder |
|
from wenet.transformer.encoder import BaseEncoder |
|
from wenet.utils.init_model import init_model |
|
from wenet.utils.mask import make_pad_mask |
|
|
|
try: |
|
import onnxruntime |
|
except ImportError: |
|
print("Please install onnxruntime-gpu!") |
|
sys.exit(1) |
|
|
|
logger = logging.getLogger(__file__) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
class Encoder(torch.nn.Module): |
|
def __init__(self, encoder: BaseEncoder, ctc: CTC, beam_size: int = 10): |
|
super().__init__() |
|
self.encoder = encoder |
|
self.ctc = ctc |
|
self.beam_size = beam_size |
|
|
|
def forward( |
|
self, |
|
speech: torch.Tensor, |
|
speech_lengths: torch.Tensor, |
|
): |
|
"""Encoder |
|
Args: |
|
speech: (Batch, Length, ...) |
|
speech_lengths: (Batch, ) |
|
Returns: |
|
encoder_out: B x T x F |
|
encoder_out_lens: B |
|
ctc_log_probs: B x T x V |
|
beam_log_probs: B x T x beam_size |
|
beam_log_probs_idx: B x T x beam_size |
|
""" |
|
encoder_out, encoder_mask = self.encoder(speech, speech_lengths, -1, -1) |
|
encoder_out_lens = encoder_mask.squeeze(1).sum(1) |
|
ctc_log_probs = self.ctc.log_softmax(encoder_out) |
|
encoder_out_lens = encoder_out_lens.int() |
|
beam_log_probs, beam_log_probs_idx = torch.topk( |
|
ctc_log_probs, self.beam_size, dim=2 |
|
) |
|
return ( |
|
encoder_out, |
|
encoder_out_lens, |
|
ctc_log_probs, |
|
beam_log_probs, |
|
beam_log_probs_idx, |
|
) |
|
|
|
|
|
class StreamingEncoder(torch.nn.Module): |
|
def __init__(self, model, required_cache_size, beam_size, transformer=False): |
|
super().__init__() |
|
self.ctc = model.ctc |
|
self.subsampling_rate = model.encoder.embed.subsampling_rate |
|
self.embed = model.encoder.embed |
|
self.global_cmvn = model.encoder.global_cmvn |
|
self.required_cache_size = required_cache_size |
|
self.beam_size = beam_size |
|
self.encoder = model.encoder |
|
self.transformer = transformer |
|
|
|
def forward(self, chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask): |
|
"""Streaming Encoder |
|
Args: |
|
xs (torch.Tensor): chunk input, with shape (b, time, mel-dim), |
|
where `time == (chunk_size - 1) * subsample_rate + \ |
|
subsample.right_context + 1` |
|
offset (torch.Tensor): offset with shape (b, 1) |
|
1 is retained for triton deployment |
|
required_cache_size (int): cache size required for next chunk |
|
compuation |
|
> 0: actual cache size |
|
<= 0: not allowed in streaming gpu encoder ` |
|
att_cache (torch.Tensor): cache tensor for KEY & VALUE in |
|
transformer/conformer attention, with shape |
|
(b, elayers, head, cache_t1, d_k * 2), where |
|
`head * d_k == hidden-dim` and |
|
`cache_t1 == chunk_size * num_decoding_left_chunks`. |
|
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, |
|
(b, elayers, b, hidden-dim, cache_t2), where |
|
`cache_t2 == cnn.lorder - 1` |
|
cache_mask: (torch.Tensor): cache mask with shape (b, required_cache_size) |
|
in a batch of request, each request may have different |
|
history cache. Cache mask is used to indidate the effective |
|
cache for each request |
|
Returns: |
|
torch.Tensor: log probabilities of ctc output and cutoff by beam size |
|
with shape (b, chunk_size, beam) |
|
torch.Tensor: index of top beam size probabilities for each timestep |
|
with shape (b, chunk_size, beam) |
|
torch.Tensor: output of current input xs, |
|
with shape (b, chunk_size, hidden-dim). |
|
torch.Tensor: new attention cache required for next chunk, with |
|
same shape (b, elayers, head, cache_t1, d_k * 2) |
|
as the original att_cache |
|
torch.Tensor: new conformer cnn cache required for next chunk, with |
|
same shape as the original cnn_cache. |
|
torch.Tensor: new cache mask, with same shape as the original |
|
cache mask |
|
""" |
|
offset = offset.squeeze(1) |
|
T = chunk_xs.size(1) |
|
chunk_mask = ~make_pad_mask(chunk_lens, T).unsqueeze(1) |
|
|
|
chunk_mask = chunk_mask.to(chunk_xs.dtype) |
|
|
|
att_cache = torch.transpose(att_cache, 0, 1) |
|
cnn_cache = torch.transpose(cnn_cache, 0, 1) |
|
|
|
|
|
|
|
xs = self.global_cmvn(chunk_xs) |
|
|
|
|
|
xs, pos_emb, chunk_mask = self.embed(xs, chunk_mask, offset) |
|
cache_size = att_cache.size(3) |
|
masks = torch.cat((cache_mask, chunk_mask), dim=2) |
|
index = offset - cache_size |
|
|
|
pos_emb = self.embed.position_encoding(index, cache_size + xs.size(1)) |
|
pos_emb = pos_emb.to(dtype=xs.dtype) |
|
|
|
next_cache_start = -self.required_cache_size |
|
r_cache_mask = masks[:, :, next_cache_start:] |
|
|
|
r_att_cache = [] |
|
r_cnn_cache = [] |
|
for i, layer in enumerate(self.encoder.encoders): |
|
xs, _, new_att_cache, new_cnn_cache = layer( |
|
xs, masks, pos_emb, att_cache=att_cache[i], cnn_cache=cnn_cache[i] |
|
) |
|
|
|
|
|
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :].unsqueeze(1)) |
|
if not self.transformer: |
|
r_cnn_cache.append(new_cnn_cache.unsqueeze(1)) |
|
if self.encoder.normalize_before: |
|
chunk_out = self.encoder.after_norm(xs) |
|
else: |
|
chunk_out = xs |
|
|
|
r_att_cache = torch.cat(r_att_cache, dim=1) |
|
if not self.transformer: |
|
r_cnn_cache = torch.cat(r_cnn_cache, dim=1) |
|
|
|
|
|
|
|
log_ctc_probs = self.ctc.log_softmax(chunk_out) |
|
log_probs, log_probs_idx = torch.topk(log_ctc_probs, self.beam_size, dim=2) |
|
log_probs = log_probs.to(chunk_xs.dtype) |
|
|
|
r_offset = offset + chunk_out.shape[1] |
|
|
|
|
|
|
|
chunk_out_lens = chunk_lens // self.subsampling_rate |
|
r_offset = r_offset.unsqueeze(1) |
|
|
|
return ( |
|
log_probs, |
|
log_probs_idx, |
|
chunk_out, |
|
chunk_out_lens, |
|
r_offset, |
|
r_att_cache, |
|
r_cnn_cache, |
|
r_cache_mask, |
|
) |
|
|
|
|
|
class StreamingSqueezeformerEncoder(torch.nn.Module): |
|
def __init__(self, model, required_cache_size, beam_size): |
|
super().__init__() |
|
self.ctc = model.ctc |
|
self.subsampling_rate = model.encoder.embed.subsampling_rate |
|
self.embed = model.encoder.embed |
|
self.global_cmvn = model.encoder.global_cmvn |
|
self.required_cache_size = required_cache_size |
|
self.beam_size = beam_size |
|
self.encoder = model.encoder |
|
self.reduce_idx = model.encoder.reduce_idx |
|
self.recover_idx = model.encoder.recover_idx |
|
if self.reduce_idx is None: |
|
self.time_reduce = None |
|
else: |
|
if self.recover_idx is None: |
|
self.time_reduce = "normal" |
|
else: |
|
self.time_reduce = "recover" |
|
assert len(self.reduce_idx) == len(self.recover_idx) |
|
|
|
def calculate_downsampling_factor(self, i: int) -> int: |
|
if self.reduce_idx is None: |
|
return 1 |
|
else: |
|
reduce_exp, recover_exp = 0, 0 |
|
for exp, rd_idx in enumerate(self.reduce_idx): |
|
if i >= rd_idx: |
|
reduce_exp = exp + 1 |
|
if self.recover_idx is not None: |
|
for exp, rc_idx in enumerate(self.recover_idx): |
|
if i >= rc_idx: |
|
recover_exp = exp + 1 |
|
return int(2 ** (reduce_exp - recover_exp)) |
|
|
|
def forward(self, chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask): |
|
"""Streaming Encoder |
|
Args: |
|
xs (torch.Tensor): chunk input, with shape (b, time, mel-dim), |
|
where `time == (chunk_size - 1) * subsample_rate + \ |
|
subsample.right_context + 1` |
|
offset (torch.Tensor): offset with shape (b, 1) |
|
1 is retained for triton deployment |
|
required_cache_size (int): cache size required for next chunk |
|
compuation |
|
> 0: actual cache size |
|
<= 0: not allowed in streaming gpu encoder ` |
|
att_cache (torch.Tensor): cache tensor for KEY & VALUE in |
|
transformer/conformer attention, with shape |
|
(b, elayers, head, cache_t1, d_k * 2), where |
|
`head * d_k == hidden-dim` and |
|
`cache_t1 == chunk_size * num_decoding_left_chunks`. |
|
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, |
|
(b, elayers, b, hidden-dim, cache_t2), where |
|
`cache_t2 == cnn.lorder - 1` |
|
cache_mask: (torch.Tensor): cache mask with shape (b, required_cache_size) |
|
in a batch of request, each request may have different |
|
history cache. Cache mask is used to indidate the effective |
|
cache for each request |
|
Returns: |
|
torch.Tensor: log probabilities of ctc output and cutoff by beam size |
|
with shape (b, chunk_size, beam) |
|
torch.Tensor: index of top beam size probabilities for each timestep |
|
with shape (b, chunk_size, beam) |
|
torch.Tensor: output of current input xs, |
|
with shape (b, chunk_size, hidden-dim). |
|
torch.Tensor: new attention cache required for next chunk, with |
|
same shape (b, elayers, head, cache_t1, d_k * 2) |
|
as the original att_cache |
|
torch.Tensor: new conformer cnn cache required for next chunk, with |
|
same shape as the original cnn_cache. |
|
torch.Tensor: new cache mask, with same shape as the original |
|
cache mask |
|
""" |
|
offset = offset.squeeze(1) |
|
T = chunk_xs.size(1) |
|
chunk_mask = ~make_pad_mask(chunk_lens, T).unsqueeze(1) |
|
|
|
chunk_mask = chunk_mask.to(chunk_xs.dtype) |
|
|
|
att_cache = torch.transpose(att_cache, 0, 1) |
|
cnn_cache = torch.transpose(cnn_cache, 0, 1) |
|
|
|
|
|
|
|
xs = self.global_cmvn(chunk_xs) |
|
|
|
|
|
xs, pos_emb, chunk_mask = self.embed(xs, chunk_mask, offset) |
|
elayers, cache_size = att_cache.size(0), att_cache.size(3) |
|
att_mask = torch.cat((cache_mask, chunk_mask), dim=2) |
|
index = offset - cache_size |
|
|
|
pos_emb = self.embed.position_encoding(index, cache_size + xs.size(1)) |
|
pos_emb = pos_emb.to(dtype=xs.dtype) |
|
|
|
next_cache_start = -self.required_cache_size |
|
r_cache_mask = att_mask[:, :, next_cache_start:] |
|
|
|
r_att_cache = [] |
|
r_cnn_cache = [] |
|
mask_pad = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool) |
|
mask_pad = mask_pad.unsqueeze(1) |
|
max_att_len: int = 0 |
|
recover_activations: List[ |
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor] |
|
] = [] |
|
index = 0 |
|
xs_lens = torch.tensor([xs.size(1)], device=xs.device, dtype=torch.int) |
|
xs = self.encoder.preln(xs) |
|
for i, layer in enumerate(self.encoder.encoders): |
|
if self.reduce_idx is not None: |
|
if self.time_reduce is not None and i in self.reduce_idx: |
|
recover_activations.append((xs, att_mask, pos_emb, mask_pad)) |
|
xs, xs_lens, att_mask, mask_pad = self.encoder.time_reduction_layer( |
|
xs, xs_lens, att_mask, mask_pad |
|
) |
|
pos_emb = pos_emb[:, ::2, :] |
|
if self.encoder.pos_enc_layer_type == "rel_pos_repaired": |
|
pos_emb = pos_emb[:, : xs.size(1) * 2 - 1, :] |
|
index += 1 |
|
|
|
if self.recover_idx is not None: |
|
if self.time_reduce == "recover" and i in self.recover_idx: |
|
index -= 1 |
|
( |
|
recover_tensor, |
|
recover_att_mask, |
|
recover_pos_emb, |
|
recover_mask_pad, |
|
) = recover_activations[index] |
|
|
|
xs = xs.unsqueeze(2).repeat(1, 1, 2, 1).flatten(1, 2) |
|
xs = self.encoder.time_recover_layer(xs) |
|
recoverd_t = recover_tensor.size(1) |
|
xs = recover_tensor + xs[:, :recoverd_t, :].contiguous() |
|
att_mask = recover_att_mask |
|
pos_emb = recover_pos_emb |
|
mask_pad = recover_mask_pad |
|
|
|
factor = self.calculate_downsampling_factor(i) |
|
|
|
xs, _, new_att_cache, new_cnn_cache = layer( |
|
xs, |
|
att_mask, |
|
pos_emb, |
|
att_cache=att_cache[i][:, :, ::factor, :][ |
|
:, :, : pos_emb.size(1) - xs.size(1), : |
|
] |
|
if elayers > 0 |
|
else att_cache[:, :, ::factor, :], |
|
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache, |
|
) |
|
cached_att = new_att_cache[:, :, next_cache_start // factor :, :] |
|
cached_cnn = new_cnn_cache.unsqueeze(1) |
|
cached_att = ( |
|
cached_att.unsqueeze(3).repeat(1, 1, 1, factor, 1).flatten(2, 3) |
|
) |
|
if i == 0: |
|
|
|
max_att_len = cached_att.size(2) |
|
r_att_cache.append(cached_att[:, :, :max_att_len, :].unsqueeze(1)) |
|
r_cnn_cache.append(cached_cnn) |
|
|
|
chunk_out = xs |
|
r_att_cache = torch.cat(r_att_cache, dim=1) |
|
r_cnn_cache = torch.cat(r_cnn_cache, dim=1) |
|
|
|
|
|
|
|
log_ctc_probs = self.ctc.log_softmax(chunk_out) |
|
log_probs, log_probs_idx = torch.topk(log_ctc_probs, self.beam_size, dim=2) |
|
log_probs = log_probs.to(chunk_xs.dtype) |
|
|
|
r_offset = offset + chunk_out.shape[1] |
|
|
|
|
|
|
|
chunk_out_lens = chunk_lens // self.subsampling_rate |
|
r_offset = r_offset.unsqueeze(1) |
|
|
|
return ( |
|
log_probs, |
|
log_probs_idx, |
|
chunk_out, |
|
chunk_out_lens, |
|
r_offset, |
|
r_att_cache, |
|
r_cnn_cache, |
|
r_cache_mask, |
|
) |
|
|
|
|
|
class StreamingEfficientConformerEncoder(torch.nn.Module): |
|
def __init__(self, model, required_cache_size, beam_size): |
|
super().__init__() |
|
self.ctc = model.ctc |
|
self.subsampling_rate = model.encoder.embed.subsampling_rate |
|
self.embed = model.encoder.embed |
|
self.global_cmvn = model.encoder.global_cmvn |
|
self.required_cache_size = required_cache_size |
|
self.beam_size = beam_size |
|
self.encoder = model.encoder |
|
|
|
|
|
self.stride_layer_idx = model.encoder.stride_layer_idx |
|
self.stride = model.encoder.stride |
|
self.num_blocks = model.encoder.num_blocks |
|
self.cnn_module_kernel = model.encoder.cnn_module_kernel |
|
|
|
def calculate_downsampling_factor(self, i: int) -> int: |
|
factor = 1 |
|
for idx, stride_idx in enumerate(self.stride_layer_idx): |
|
if i > stride_idx: |
|
factor *= self.stride[idx] |
|
return factor |
|
|
|
def forward(self, chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask): |
|
"""Streaming Encoder |
|
Args: |
|
chunk_xs (torch.Tensor): chunk input, with shape (b, time, mel-dim), |
|
where `time == (chunk_size - 1) * subsample_rate + \ |
|
subsample.right_context + 1` |
|
chunk_lens (torch.Tensor): |
|
offset (torch.Tensor): offset with shape (b, 1) |
|
1 is retained for triton deployment |
|
att_cache (torch.Tensor): cache tensor for KEY & VALUE in |
|
transformer/conformer attention, with shape |
|
(b, elayers, head, cache_t1, d_k * 2), where |
|
`head * d_k == hidden-dim` and |
|
`cache_t1 == chunk_size * num_decoding_left_chunks`. |
|
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer, |
|
(b, elayers, hidden-dim, cache_t2), where |
|
`cache_t2 == cnn.lorder - 1` |
|
cache_mask: (torch.Tensor): cache mask with shape (b, required_cache_size) |
|
in a batch of request, each request may have different |
|
history cache. Cache mask is used to indidate the effective |
|
cache for each request |
|
Returns: |
|
torch.Tensor: log probabilities of ctc output and cutoff by beam size |
|
with shape (b, chunk_size, beam) |
|
torch.Tensor: index of top beam size probabilities for each timestep |
|
with shape (b, chunk_size, beam) |
|
torch.Tensor: output of current input xs, |
|
with shape (b, chunk_size, hidden-dim). |
|
torch.Tensor: new attention cache required for next chunk, with |
|
same shape (b, elayers, head, cache_t1, d_k * 2) |
|
as the original att_cache |
|
torch.Tensor: new conformer cnn cache required for next chunk, with |
|
same shape as the original cnn_cache. |
|
torch.Tensor: new cache mask, with same shape as the original |
|
cache mask |
|
""" |
|
offset = offset.squeeze(1) |
|
offset *= self.calculate_downsampling_factor(self.num_blocks + 1) |
|
|
|
T = chunk_xs.size(1) |
|
chunk_mask = ~make_pad_mask(chunk_lens, T).unsqueeze(1) |
|
|
|
chunk_mask = chunk_mask.to(chunk_xs.dtype) |
|
|
|
|
|
|
|
att_cache = torch.transpose(att_cache, 0, 1) |
|
cnn_cache = torch.transpose(cnn_cache, 0, 1) |
|
|
|
|
|
|
|
xs = self.global_cmvn(chunk_xs) |
|
|
|
|
|
xs, pos_emb, chunk_mask = self.embed(xs, chunk_mask, offset) |
|
cache_size = att_cache.size(3) |
|
masks = torch.cat((cache_mask, chunk_mask), dim=2) |
|
att_mask = torch.cat((cache_mask, chunk_mask), dim=2) |
|
index = offset - cache_size |
|
|
|
pos_emb = self.embed.position_encoding(index, cache_size + xs.size(1)) |
|
pos_emb = pos_emb.to(dtype=xs.dtype) |
|
|
|
next_cache_start = -self.required_cache_size |
|
r_cache_mask = masks[:, :, next_cache_start:] |
|
|
|
r_att_cache = [] |
|
r_cnn_cache = [] |
|
mask_pad = chunk_mask.to(torch.bool) |
|
max_att_len, max_cnn_len = 0, 0 |
|
for i, layer in enumerate(self.encoder.encoders): |
|
factor = self.calculate_downsampling_factor(i) |
|
|
|
|
|
|
|
|
|
att_cache_trunc = 0 |
|
if xs.size(1) + att_cache.size(3) / factor > pos_emb.size(1): |
|
|
|
|
|
att_cache_trunc = ( |
|
xs.size(1) + att_cache.size(3) // factor - pos_emb.size(1) + 1 |
|
) |
|
xs, _, new_att_cache, new_cnn_cache = layer( |
|
xs, |
|
att_mask, |
|
pos_emb, |
|
mask_pad=mask_pad, |
|
att_cache=att_cache[i][:, :, ::factor, :][:, :, att_cache_trunc:, :], |
|
cnn_cache=cnn_cache[i, :, :, :] if cnn_cache.size(0) > 0 else cnn_cache, |
|
) |
|
|
|
if i in self.stride_layer_idx: |
|
|
|
efficient_index = self.stride_layer_idx.index(i) |
|
att_mask = att_mask[ |
|
:, :: self.stride[efficient_index], :: self.stride[efficient_index] |
|
] |
|
mask_pad = mask_pad[ |
|
:, :: self.stride[efficient_index], :: self.stride[efficient_index] |
|
] |
|
pos_emb = pos_emb[:, :: self.stride[efficient_index], :] |
|
|
|
|
|
new_att_cache = new_att_cache[:, :, next_cache_start // factor :, :] |
|
|
|
new_cnn_cache = new_cnn_cache.unsqueeze(1) |
|
|
|
|
|
|
|
new_att_cache = ( |
|
new_att_cache.unsqueeze(3).repeat(1, 1, 1, factor, 1).flatten(2, 3) |
|
) |
|
|
|
new_cnn_cache = F.pad( |
|
new_cnn_cache, (self.cnn_module_kernel - 1 - new_cnn_cache.size(3), 0) |
|
) |
|
|
|
if i == 0: |
|
|
|
max_att_len = new_att_cache.size(2) |
|
max_cnn_len = new_cnn_cache.size(3) |
|
|
|
|
|
r_att_cache.append(new_att_cache[:, :, -max_att_len:, :].unsqueeze(1)) |
|
r_cnn_cache.append(new_cnn_cache[:, :, :, -max_cnn_len:]) |
|
|
|
if self.encoder.normalize_before: |
|
chunk_out = self.encoder.after_norm(xs) |
|
else: |
|
chunk_out = xs |
|
|
|
|
|
r_att_cache = torch.cat(r_att_cache, dim=1) |
|
|
|
r_cnn_cache = torch.cat(r_cnn_cache, dim=1) |
|
|
|
|
|
|
|
log_ctc_probs = self.ctc.log_softmax(chunk_out) |
|
log_probs, log_probs_idx = torch.topk(log_ctc_probs, self.beam_size, dim=2) |
|
log_probs = log_probs.to(chunk_xs.dtype) |
|
|
|
r_offset = offset + chunk_out.shape[1] |
|
|
|
|
|
|
|
chunk_out_lens = ( |
|
chunk_lens |
|
// self.subsampling_rate |
|
// self.calculate_downsampling_factor(self.num_blocks + 1) |
|
) |
|
chunk_out_lens += 1 |
|
r_offset = r_offset.unsqueeze(1) |
|
|
|
return ( |
|
log_probs, |
|
log_probs_idx, |
|
chunk_out, |
|
chunk_out_lens, |
|
r_offset, |
|
r_att_cache, |
|
r_cnn_cache, |
|
r_cache_mask, |
|
) |
|
|
|
|
|
class Decoder(torch.nn.Module): |
|
def __init__( |
|
self, |
|
decoder: TransformerDecoder, |
|
ctc_weight: float = 0.5, |
|
reverse_weight: float = 0.0, |
|
beam_size: int = 10, |
|
decoder_fastertransformer: bool = False, |
|
): |
|
super().__init__() |
|
self.decoder = decoder |
|
self.ctc_weight = ctc_weight |
|
self.reverse_weight = reverse_weight |
|
self.beam_size = beam_size |
|
self.decoder_fastertransformer = decoder_fastertransformer |
|
|
|
def forward( |
|
self, |
|
encoder_out: torch.Tensor, |
|
encoder_lens: torch.Tensor, |
|
hyps_pad_sos_eos: torch.Tensor, |
|
hyps_lens_sos: torch.Tensor, |
|
r_hyps_pad_sos_eos: torch.Tensor, |
|
ctc_score: torch.Tensor, |
|
): |
|
"""Encoder |
|
Args: |
|
encoder_out: B x T x F |
|
encoder_lens: B |
|
hyps_pad_sos_eos: B x beam x (T2+1), |
|
hyps with sos & eos and padded by ignore id |
|
hyps_lens_sos: B x beam, length for each hyp with sos |
|
r_hyps_pad_sos_eos: B x beam x (T2+1), |
|
reversed hyps with sos & eos and padded by ignore id |
|
ctc_score: B x beam, ctc score for each hyp |
|
Returns: |
|
decoder_out: B x beam x T2 x V |
|
r_decoder_out: B x beam x T2 x V |
|
best_index: B |
|
""" |
|
B, T, F = encoder_out.shape |
|
bz = self.beam_size |
|
B2 = B * bz |
|
encoder_out = encoder_out.repeat(1, bz, 1).view(B2, T, F) |
|
encoder_mask = ~make_pad_mask(encoder_lens, T).unsqueeze(1) |
|
encoder_mask = encoder_mask.repeat(1, bz, 1).view(B2, 1, T) |
|
T2 = hyps_pad_sos_eos.shape[2] - 1 |
|
hyps_pad = hyps_pad_sos_eos.view(B2, T2 + 1) |
|
hyps_lens = hyps_lens_sos.view( |
|
B2, |
|
) |
|
hyps_pad_sos = hyps_pad[:, :-1].contiguous() |
|
hyps_pad_eos = hyps_pad[:, 1:].contiguous() |
|
|
|
r_hyps_pad = r_hyps_pad_sos_eos.view(B2, T2 + 1) |
|
r_hyps_pad_sos = r_hyps_pad[:, :-1].contiguous() |
|
r_hyps_pad_eos = r_hyps_pad[:, 1:].contiguous() |
|
|
|
decoder_out, r_decoder_out, _ = self.decoder( |
|
encoder_out, |
|
encoder_mask, |
|
hyps_pad_sos, |
|
hyps_lens, |
|
r_hyps_pad_sos, |
|
self.reverse_weight, |
|
) |
|
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1) |
|
V = decoder_out.shape[-1] |
|
decoder_out = decoder_out.view(B2, T2, V) |
|
mask = ~make_pad_mask(hyps_lens, T2) |
|
|
|
index = torch.unsqueeze(hyps_pad_eos * mask, 2) |
|
score = decoder_out.gather(2, index).squeeze(2) |
|
|
|
score = score * mask |
|
decoder_out = decoder_out.view(B, bz, T2, V) |
|
if self.reverse_weight > 0: |
|
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1) |
|
r_decoder_out = r_decoder_out.view(B2, T2, V) |
|
index = torch.unsqueeze(r_hyps_pad_eos * mask, 2) |
|
r_score = r_decoder_out.gather(2, index).squeeze(2) |
|
r_score = r_score * mask |
|
score = score * (1 - self.reverse_weight) + self.reverse_weight * r_score |
|
r_decoder_out = r_decoder_out.view(B, bz, T2, V) |
|
score = torch.sum(score, axis=1) |
|
score = torch.reshape(score, (B, bz)) + self.ctc_weight * ctc_score |
|
best_index = torch.argmax(score, dim=1) |
|
if self.decoder_fastertransformer: |
|
return decoder_out, best_index |
|
else: |
|
return best_index |
|
|
|
|
|
def to_numpy(tensors): |
|
out = [] |
|
if type(tensors) == torch.tensor: |
|
tensors = [tensors] |
|
for tensor in tensors: |
|
if tensor.requires_grad: |
|
tensor = tensor.detach().cpu().numpy() |
|
else: |
|
tensor = tensor.cpu().numpy() |
|
out.append(tensor) |
|
return out |
|
|
|
|
|
def test(xlist, blist, rtol=1e-3, atol=1e-5, tolerate_small_mismatch=True): |
|
for a, b in zip(xlist, blist): |
|
try: |
|
torch.testing.assert_allclose(a, b, rtol=rtol, atol=atol) |
|
except AssertionError as error: |
|
if tolerate_small_mismatch: |
|
print(error) |
|
else: |
|
raise |
|
|
|
|
|
def export_offline_encoder(model, configs, args, logger, encoder_onnx_path): |
|
bz = 32 |
|
seq_len = 100 |
|
beam_size = args.beam_size |
|
feature_size = configs["input_dim"] |
|
|
|
speech = torch.randn(bz, seq_len, feature_size, dtype=torch.float32) |
|
speech_lens = torch.randint(low=10, high=seq_len, size=(bz,), dtype=torch.int32) |
|
encoder = Encoder(model.encoder, model.ctc, beam_size) |
|
encoder.eval() |
|
|
|
torch.onnx.export( |
|
encoder, |
|
(speech, speech_lens), |
|
encoder_onnx_path, |
|
export_params=True, |
|
opset_version=13, |
|
do_constant_folding=True, |
|
input_names=["speech", "speech_lengths"], |
|
output_names=[ |
|
"encoder_out", |
|
"encoder_out_lens", |
|
"ctc_log_probs", |
|
"beam_log_probs", |
|
"beam_log_probs_idx", |
|
], |
|
dynamic_axes={ |
|
"speech": {0: "B", 1: "T"}, |
|
"speech_lengths": {0: "B"}, |
|
"encoder_out": {0: "B", 1: "T_OUT"}, |
|
"encoder_out_lens": {0: "B"}, |
|
"ctc_log_probs": {0: "B", 1: "T_OUT"}, |
|
"beam_log_probs": {0: "B", 1: "T_OUT"}, |
|
"beam_log_probs_idx": {0: "B", 1: "T_OUT"}, |
|
}, |
|
verbose=False, |
|
) |
|
|
|
with torch.no_grad(): |
|
o0, o1, o2, o3, o4 = encoder(speech, speech_lens) |
|
|
|
providers = ["CUDAExecutionProvider"] |
|
ort_session = onnxruntime.InferenceSession(encoder_onnx_path, providers=providers) |
|
ort_inputs = {"speech": to_numpy(speech), "speech_lengths": to_numpy(speech_lens)} |
|
ort_outs = ort_session.run(None, ort_inputs) |
|
|
|
|
|
test(to_numpy([o0, o1, o2, o3, o4]), ort_outs) |
|
logger.info("export offline onnx encoder succeed!") |
|
onnx_config = { |
|
"beam_size": args.beam_size, |
|
"reverse_weight": args.reverse_weight, |
|
"ctc_weight": args.ctc_weight, |
|
"fp16": args.fp16, |
|
} |
|
return onnx_config |
|
|
|
|
|
def export_online_encoder(model, configs, args, logger, encoder_onnx_path): |
|
decoding_chunk_size = args.decoding_chunk_size |
|
subsampling = model.encoder.embed.subsampling_rate |
|
context = model.encoder.embed.right_context + 1 |
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context |
|
batch_size = 32 |
|
audio_len = decoding_window |
|
feature_size = configs["input_dim"] |
|
output_size = configs["encoder_conf"]["output_size"] |
|
num_layers = configs["encoder_conf"]["num_blocks"] |
|
|
|
transformer = False |
|
cnn_module_kernel = configs["encoder_conf"].get("cnn_module_kernel", 1) - 1 |
|
if not cnn_module_kernel: |
|
transformer = True |
|
num_decoding_left_chunks = args.num_decoding_left_chunks |
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks |
|
if configs["encoder"] == "squeezeformer": |
|
encoder = StreamingSqueezeformerEncoder( |
|
model, required_cache_size, args.beam_size |
|
) |
|
elif configs["encoder"] == "efficientConformer": |
|
encoder = StreamingEfficientConformerEncoder( |
|
model, required_cache_size, args.beam_size |
|
) |
|
else: |
|
encoder = StreamingEncoder( |
|
model, required_cache_size, args.beam_size, transformer |
|
) |
|
encoder.eval() |
|
|
|
|
|
chunk_xs = torch.randn(batch_size, audio_len, feature_size, dtype=torch.float32) |
|
chunk_lens = torch.ones(batch_size, dtype=torch.int32) * audio_len |
|
|
|
offset = torch.arange(0, batch_size).unsqueeze(1) |
|
|
|
head = configs["encoder_conf"]["attention_heads"] |
|
d_k = configs["encoder_conf"]["output_size"] // head |
|
att_cache = torch.randn( |
|
batch_size, num_layers, head, required_cache_size, d_k * 2, dtype=torch.float32 |
|
) |
|
cnn_cache = torch.randn( |
|
batch_size, num_layers, output_size, cnn_module_kernel, dtype=torch.float32 |
|
) |
|
|
|
cache_mask = torch.ones(batch_size, 1, required_cache_size, dtype=torch.float32) |
|
input_names = [ |
|
"chunk_xs", |
|
"chunk_lens", |
|
"offset", |
|
"att_cache", |
|
"cnn_cache", |
|
"cache_mask", |
|
] |
|
output_names = [ |
|
"log_probs", |
|
"log_probs_idx", |
|
"chunk_out", |
|
"chunk_out_lens", |
|
"r_offset", |
|
"r_att_cache", |
|
"r_cnn_cache", |
|
"r_cache_mask", |
|
] |
|
input_tensors = (chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask) |
|
if transformer: |
|
output_names.pop(6) |
|
|
|
all_names = input_names + output_names |
|
dynamic_axes = {} |
|
for name in all_names: |
|
|
|
|
|
dynamic_axes[name] = {0: "B"} |
|
|
|
torch.onnx.export( |
|
encoder, |
|
input_tensors, |
|
encoder_onnx_path, |
|
export_params=True, |
|
opset_version=14, |
|
do_constant_folding=True, |
|
input_names=input_names, |
|
output_names=output_names, |
|
dynamic_axes=dynamic_axes, |
|
verbose=False, |
|
) |
|
|
|
with torch.no_grad(): |
|
torch_outs = encoder( |
|
chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask |
|
) |
|
if transformer: |
|
torch_outs = list(torch_outs).pop(6) |
|
ort_session = onnxruntime.InferenceSession( |
|
encoder_onnx_path, providers=["CUDAExecutionProvider"] |
|
) |
|
ort_inputs = {} |
|
|
|
input_tensors = to_numpy(input_tensors) |
|
for idx, name in enumerate(input_names): |
|
ort_inputs[name] = input_tensors[idx] |
|
if transformer: |
|
del ort_inputs["cnn_cache"] |
|
ort_outs = ort_session.run(None, ort_inputs) |
|
test(to_numpy(torch_outs), ort_outs, rtol=1e-03, atol=1e-05) |
|
logger.info("export to onnx streaming encoder succeed!") |
|
onnx_config = { |
|
"subsampling_rate": subsampling, |
|
"context": context, |
|
"decoding_chunk_size": decoding_chunk_size, |
|
"num_decoding_left_chunks": num_decoding_left_chunks, |
|
"beam_size": args.beam_size, |
|
"fp16": args.fp16, |
|
"feat_size": feature_size, |
|
"decoding_window": decoding_window, |
|
"cnn_module_kernel_cache": cnn_module_kernel, |
|
} |
|
return onnx_config |
|
|
|
|
|
def export_rescoring_decoder( |
|
model, configs, args, logger, decoder_onnx_path, decoder_fastertransformer |
|
): |
|
bz, seq_len = 32, 100 |
|
beam_size = args.beam_size |
|
decoder = Decoder( |
|
model.decoder, |
|
model.ctc_weight, |
|
model.reverse_weight, |
|
beam_size, |
|
decoder_fastertransformer, |
|
) |
|
decoder.eval() |
|
|
|
hyps_pad_sos_eos = torch.randint(low=3, high=1000, size=(bz, beam_size, seq_len)) |
|
hyps_lens_sos = torch.randint( |
|
low=3, high=seq_len, size=(bz, beam_size), dtype=torch.int32 |
|
) |
|
r_hyps_pad_sos_eos = torch.randint(low=3, high=1000, size=(bz, beam_size, seq_len)) |
|
|
|
output_size = configs["encoder_conf"]["output_size"] |
|
encoder_out = torch.randn(bz, seq_len, output_size, dtype=torch.float32) |
|
encoder_out_lens = torch.randint(low=3, high=seq_len, size=(bz,), dtype=torch.int32) |
|
ctc_score = torch.randn(bz, beam_size, dtype=torch.float32) |
|
|
|
input_names = [ |
|
"encoder_out", |
|
"encoder_out_lens", |
|
"hyps_pad_sos_eos", |
|
"hyps_lens_sos", |
|
"r_hyps_pad_sos_eos", |
|
"ctc_score", |
|
] |
|
output_names = ["best_index"] |
|
if decoder_fastertransformer: |
|
output_names.insert(0, "decoder_out") |
|
|
|
torch.onnx.export( |
|
decoder, |
|
( |
|
encoder_out, |
|
encoder_out_lens, |
|
hyps_pad_sos_eos, |
|
hyps_lens_sos, |
|
r_hyps_pad_sos_eos, |
|
ctc_score, |
|
), |
|
decoder_onnx_path, |
|
export_params=True, |
|
opset_version=13, |
|
do_constant_folding=True, |
|
input_names=input_names, |
|
output_names=output_names, |
|
dynamic_axes={ |
|
"encoder_out": {0: "B", 1: "T"}, |
|
"encoder_out_lens": {0: "B"}, |
|
"hyps_pad_sos_eos": {0: "B", 2: "T2"}, |
|
"hyps_lens_sos": {0: "B"}, |
|
"r_hyps_pad_sos_eos": {0: "B", 2: "T2"}, |
|
"ctc_score": {0: "B"}, |
|
"best_index": {0: "B"}, |
|
}, |
|
verbose=False, |
|
) |
|
with torch.no_grad(): |
|
o0 = decoder( |
|
encoder_out, |
|
encoder_out_lens, |
|
hyps_pad_sos_eos, |
|
hyps_lens_sos, |
|
r_hyps_pad_sos_eos, |
|
ctc_score, |
|
) |
|
providers = ["CUDAExecutionProvider"] |
|
ort_session = onnxruntime.InferenceSession(decoder_onnx_path, providers=providers) |
|
|
|
input_tensors = [ |
|
encoder_out, |
|
encoder_out_lens, |
|
hyps_pad_sos_eos, |
|
hyps_lens_sos, |
|
r_hyps_pad_sos_eos, |
|
ctc_score, |
|
] |
|
ort_inputs = {} |
|
input_tensors = to_numpy(input_tensors) |
|
for idx, name in enumerate(input_names): |
|
ort_inputs[name] = input_tensors[idx] |
|
|
|
|
|
|
|
|
|
if model.reverse_weight == 0: |
|
del ort_inputs["r_hyps_pad_sos_eos"] |
|
ort_outs = ort_session.run(None, ort_inputs) |
|
|
|
|
|
if decoder_fastertransformer: |
|
test(to_numpy(o0), ort_outs, rtol=1e-03, atol=1e-05) |
|
else: |
|
test(to_numpy([o0]), ort_outs, rtol=1e-03, atol=1e-05) |
|
logger.info("export to onnx decoder succeed!") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="export x86_gpu model") |
|
parser.add_argument("--config", required=True, help="config file") |
|
parser.add_argument("--checkpoint", required=True, help="checkpoint model") |
|
parser.add_argument( |
|
"--cmvn_file", |
|
required=False, |
|
default="", |
|
type=str, |
|
help="global_cmvn file, default path is in config file", |
|
) |
|
parser.add_argument( |
|
"--reverse_weight", |
|
default=-1.0, |
|
type=float, |
|
required=False, |
|
help="reverse weight for bitransformer," + "default value is in config file", |
|
) |
|
parser.add_argument( |
|
"--ctc_weight", |
|
default=-1.0, |
|
type=float, |
|
required=False, |
|
help="ctc weight, default value is in config file", |
|
) |
|
parser.add_argument( |
|
"--beam_size", |
|
default=10, |
|
type=int, |
|
required=False, |
|
help="beam size would be ctc output size", |
|
) |
|
parser.add_argument( |
|
"--output_onnx_dir", |
|
default="onnx_model", |
|
help="output onnx encoder and decoder directory", |
|
) |
|
parser.add_argument( |
|
"--fp16", |
|
action="store_true", |
|
help="whether to export fp16 model, default false", |
|
) |
|
|
|
parser.add_argument( |
|
"--streaming", |
|
action="store_true", |
|
help="whether to export streaming encoder, default false", |
|
) |
|
parser.add_argument( |
|
"--decoding_chunk_size", |
|
default=16, |
|
type=int, |
|
required=False, |
|
help="the decoding chunk size, <=0 is not supported", |
|
) |
|
parser.add_argument( |
|
"--num_decoding_left_chunks", |
|
default=5, |
|
type=int, |
|
required=False, |
|
help="number of left chunks, <= 0 is not supported", |
|
) |
|
parser.add_argument( |
|
"--decoder_fastertransformer", |
|
action="store_true", |
|
help="return decoder_out and best_index for ft", |
|
) |
|
args = parser.parse_args() |
|
|
|
torch.manual_seed(0) |
|
torch.set_printoptions(precision=10) |
|
|
|
with open(args.config, "r") as fin: |
|
configs = yaml.load(fin, Loader=yaml.FullLoader) |
|
if args.cmvn_file and os.path.exists(args.cmvn_file): |
|
configs["cmvn_file"] = args.cmvn_file |
|
if args.reverse_weight != -1.0 and "reverse_weight" in configs["model_conf"]: |
|
configs["model_conf"]["reverse_weight"] = args.reverse_weight |
|
print("Update reverse weight to", args.reverse_weight) |
|
if args.ctc_weight != -1: |
|
print("Update ctc weight to ", args.ctc_weight) |
|
configs["model_conf"]["ctc_weight"] = args.ctc_weight |
|
configs["encoder_conf"]["use_dynamic_chunk"] = False |
|
|
|
model = init_model(configs) |
|
load_checkpoint(model, args.checkpoint) |
|
model.eval() |
|
|
|
if not os.path.exists(args.output_onnx_dir): |
|
os.mkdir(args.output_onnx_dir) |
|
encoder_onnx_path = os.path.join(args.output_onnx_dir, "encoder.onnx") |
|
export_enc_func = None |
|
if args.streaming: |
|
assert args.decoding_chunk_size > 0 |
|
assert args.num_decoding_left_chunks > 0 |
|
export_enc_func = export_online_encoder |
|
else: |
|
export_enc_func = export_offline_encoder |
|
|
|
onnx_config = export_enc_func(model, configs, args, logger, encoder_onnx_path) |
|
|
|
decoder_onnx_path = os.path.join(args.output_onnx_dir, "decoder.onnx") |
|
export_rescoring_decoder( |
|
model, configs, args, logger, decoder_onnx_path, args.decoder_fastertransformer |
|
) |
|
|
|
if args.fp16: |
|
try: |
|
import onnxmltools |
|
from onnxmltools.utils.float16_converter import convert_float_to_float16 |
|
except ImportError: |
|
print("Please install onnxmltools!") |
|
sys.exit(1) |
|
encoder_onnx_model = onnxmltools.utils.load_model(encoder_onnx_path) |
|
encoder_onnx_model = convert_float_to_float16(encoder_onnx_model) |
|
encoder_onnx_path = os.path.join(args.output_onnx_dir, "encoder_fp16.onnx") |
|
onnxmltools.utils.save_model(encoder_onnx_model, encoder_onnx_path) |
|
decoder_onnx_model = onnxmltools.utils.load_model(decoder_onnx_path) |
|
decoder_onnx_model = convert_float_to_float16(decoder_onnx_model) |
|
decoder_onnx_path = os.path.join(args.output_onnx_dir, "decoder_fp16.onnx") |
|
onnxmltools.utils.save_model(decoder_onnx_model, decoder_onnx_path) |
|
|
|
|
|
config_dir = os.path.join(args.output_onnx_dir, "config.yaml") |
|
with open(config_dir, "w") as out: |
|
yaml.dump(onnx_config, out) |
|
|