BilalSardar commited on
Commit
6a80f74
·
verified ·
1 Parent(s): d50f00d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import joblib
3
+ import numpy as np
4
+
5
+ # Load the saved model
6
+ model = joblib.load('best_model.pkl')
7
+
8
+ # Load the saved pipeline (which includes the scaler and the model)
9
+ pipeline = joblib.load('best_pipeline.pkl')
10
+
11
+ # Define the prediction function
12
+ def predict(input1, input2, input3, input4, input5,input6):
13
+ # Create a numpy array from the inputs
14
+ inputs = np.array([input1, input2, input3, input4, input5,input6]).reshape(1, -1)
15
+
16
+ # Transform the inputs using the scaler
17
+ inputs_scaled = pipeline.transform(inputs)
18
+
19
+ # Make the prediction
20
+ prediction = model.predict(inputs_scaled)
21
+
22
+ # Return the prediction and a description
23
+ return prediction[0], f"The predicted value is {prediction[0]:.2f}"
24
+
25
+ # Define the Gradio interface
26
+ iface = gr.Interface(
27
+ fn=predict, # Function to call
28
+ inputs=[
29
+ gr.Number(label="Age"),
30
+ gr.Number(label="Hours per day"),
31
+ gr.Number(label="Depression"),
32
+ gr.Number(label="Insomnia"),
33
+ gr.Number(label="OCD"),
34
+ gr.Number(label="BPM")
35
+ ],
36
+ outputs=[
37
+ gr.Number(label="Predicted Value"),
38
+ gr.Textbox(label="Prediction Description")
39
+ ],
40
+ title="Music & Mental Health Predictor",
41
+ description="This Model has been trained on this <a href="https://www.kaggle.com/datasets/catherinerasgaitis/mxmh-survey-results">Dataset</a>.",
42
+ theme=gr.themes.Soft(),
43
+ examples=[[18,3,0,1,0,156]]
44
+ )
45
+
46
+ # Launch the interface
47
+ iface.launch(debug=True)