Spaces:
Runtime error
Runtime error
Upload 6 files
Browse filespointing to llama2
main.py
CHANGED
|
@@ -2,25 +2,27 @@ from fastapi import FastAPI
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from txtai.embeddings import Embeddings
|
| 4 |
from txtai.pipeline import Extractor
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
| 7 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
| 8 |
app = FastAPI(docs_url="/")
|
| 9 |
|
| 10 |
# Create embeddings model with content support
|
| 11 |
-
embeddings = Embeddings({"path": "sentence-transformers/all-MiniLM-L6-v2", "content": True})
|
| 12 |
-
embeddings.load('index')
|
| 13 |
|
| 14 |
# Create extractor instance
|
| 15 |
-
extractor = Extractor(embeddings, "google/flan-t5-base")
|
| 16 |
|
| 17 |
-
pipe = pipeline(
|
| 18 |
|
| 19 |
|
| 20 |
@app.get("/generate")
|
| 21 |
def generate(text: str):
|
| 22 |
"""
|
| 23 |
-
|
| 24 |
"""
|
| 25 |
output = pipe(text)
|
| 26 |
return {"output": output[0]["generated_text"]}
|
|
@@ -40,9 +42,9 @@ def search(query, question=None):
|
|
| 40 |
return extractor([("answer", query, prompt(question), False)])[0][1]
|
| 41 |
|
| 42 |
|
| 43 |
-
@app.get("/rag")
|
| 44 |
-
def rag(question: str):
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from txtai.embeddings import Embeddings
|
| 4 |
from txtai.pipeline import Extractor
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
|
| 7 |
|
| 8 |
# NOTE - we configure docs_url to serve the interactive Docs at the root path
|
| 9 |
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
|
| 10 |
app = FastAPI(docs_url="/")
|
| 11 |
|
| 12 |
# Create embeddings model with content support
|
| 13 |
+
# embeddings = Embeddings({"path": "sentence-transformers/all-MiniLM-L6-v2", "content": True})
|
| 14 |
+
# embeddings.load('index')
|
| 15 |
|
| 16 |
# Create extractor instance
|
| 17 |
+
#extractor = Extractor(embeddings, "google/flan-t5-base")
|
| 18 |
|
| 19 |
+
pipe = pipeline(model="TheBloke/Llama-2-7B-GGML/llama-2-7b.ggmlv3.q4_0.bin")
|
| 20 |
|
| 21 |
|
| 22 |
@app.get("/generate")
|
| 23 |
def generate(text: str):
|
| 24 |
"""
|
| 25 |
+
llama2 q4 backend
|
| 26 |
"""
|
| 27 |
output = pipe(text)
|
| 28 |
return {"output": output[0]["generated_text"]}
|
|
|
|
| 42 |
return extractor([("answer", query, prompt(question), False)])[0][1]
|
| 43 |
|
| 44 |
|
| 45 |
+
# @app.get("/rag")
|
| 46 |
+
# def rag(question: str):
|
| 47 |
+
# # question = "what is the document about?"
|
| 48 |
+
# answer = search(question)
|
| 49 |
+
# # print(question, answer)
|
| 50 |
+
# return {answer}
|