File size: 14,938 Bytes
798890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36d1e44
 
798890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pandas_datareader.data as web
import datetime as dt
import yfinance as yf
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model
import streamlit as st
import streamlit as st
import plotly.graph_objects as go
import base64
import plotly.express as px
from datetime import datetime

st.set_page_config(page_title='Regression Stocks Prediction',  layout='wide', page_icon=':rocket:')

#this is the header
t1, t2 = st.columns((0.07,1)) 

t2.title("Stock Price Analysis and Prediction Using LSTM")
t2.markdown("Created by Bayhaqy")
t2.markdown("Using Dataset MAPI to Train and Test the Model")

# Add a dictonary of stock tickers and their company names and make a drop down menu to select the stock to predict

stock_tickers = {
    "MAPI":"MAPI.JK","MAP Aktif": "MAPA.JK","MAP Boga": "MAPB.JK",
    "Tesla": "TSLA", "Apple": "AAPL", "Microsoft": "MSFT", "Google": "GOOGL", 
    "Facebook": "FB", "Amazon": "AMZN", "Netflix": "NFLX", "Alphabet": "GOOG", 
    "Nvidia": "NVDA", "Paypal": "PYPL", "Adobe": "ADBE", "Intel": "INTC", 
    "Cisco": "CSCO", "Comcast": "CMCSA", "Pepsi": "PEP", "Costco": "COST", 
    "Starbucks": "SBUX", "Walmart": "WMT", "Disney": "DIS", "Visa": "V", 
    "Mastercard": "MA", "Boeing": "BA", "IBM": "IBM", "McDonalds": "MCD", 
    "Nike": "NKE", "Exxon": "XOM", "Chevron": "CVX", "Verizon": "VZ", 
    "AT&T": "T", "Home Depot": "HD", "Salesforce": "CRM", "Oracle": "ORCL", 
    "Qualcomm": "QCOM", "AMD": "AMD"
}

st.sidebar.title("Stock Option")
# Custom CSS to change the sidebar color
sidebar_css = """
<style>
    div[data-testid="stSidebar"] > div:first-child {
        width: 350px;  # Adjust the width as needed
        background-color: #FF6969;
    }
</style>
"""

# User Input
default_index = stock_tickers.keys().index("MAPI.JK") if "MAPI.JK" in stock_tickers.keys() else 0
#st.markdown(sidebar_css, unsafe_allow_html=True)
user_input = st.sidebar.selectbox("Select a Stock", list(stock_tickers.keys()), index=default_index , key="main_selectbox")
stock_name = user_input
user_input = stock_tickers[user_input]

# User input for start and end dates using calendar widget
start_date = st.sidebar.date_input("Select start date:", datetime(2023, 1, 1))
end_date = st.sidebar.date_input("Select end date:", datetime(2023, 12, 1))
# End of User Input



# Enhanced title with larger font size and a different color
title = f"<h1 style='color: red; font-size: 25px; text-align: center; '>{stock_name}'s Stock Analysis</h1>"
st.markdown(title, unsafe_allow_html=True)

# Describing the data
st.subheader(f'Data from {start_date} - {end_date}')
data = yf.download(user_input, start_date, end_date)

# Reset the index to add the date column
data = data.reset_index()

# Display data in a Plotly table
fig = go.Figure(data=[go.Table(
        header=dict(values=list(data.columns),
                    font=dict(size=12, color='white'),
                    fill_color='#264653',
                    line_color='rgba(255,255,255,0.2)',
                    align=['left', 'center'],
                    height=20),
        cells=dict(values=[data[k].tolist() for k in data.columns],
                   font=dict(size=12),
                   align=['left', 'center'],
                   line_color='rgba(255,255,255,0.2)',
                   height=20))])

fig.update_layout(title_text=f"Data for {stock_name}", title_font_color='#264653', title_x=0, margin=dict(l=0, r=10, b=10, t=30))

st.plotly_chart(fig, use_container_width=True)


st.markdown(f"<h2 style='text-align: center; color: #264653;'>Data Overview for {stock_name}</h2>", unsafe_allow_html=True)
# Get the description of the data
description = data.describe()

# Dictionary of columns and rows to highlight
highlight_dict = {
    "Open": ["mean", "min", "max", "std"],
    "High": ["mean", "min", "max", "std"],
    "Low": ["mean", "min", "max", "std"],
    "Close": ["mean", "min", "max", "std"],
    "Adj Close": ["mean", "min", "max", "std"]
}

# Colors for specific rows
color_dict = {
    "mean": "lightgreen",
    "min": "salmon",
    "max": "lightblue",
    "std": "lightyellow"
}

# Function to highlight specific columns and rows based on the dictionaries
def highlight_specific_cells(val, col_name, row_name):
    if col_name in highlight_dict and row_name in highlight_dict[col_name]:
        return f'background-color: {color_dict[row_name]}'
    return ''

styled_description = description.style.apply(lambda row: [highlight_specific_cells(val, col, row.name) for col, val in row.items()], axis=1)

# Display the styled table in Streamlit
st.table(styled_description)

### ............................................... ##
# Stock Price Over Time
g1, g2, g3 = st.columns((1.2,1.2,1))

fig1 = px.line(data, x='Date', y='Close', template='seaborn')
fig1.update_traces(line_color='#264653')
fig1.update_layout(title_text="Stock Price Over Time", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, height=400, width=700)
g1.plotly_chart(fig1, use_container_width=True)

# Volume of Stocks Traded Over Time
fig2 = px.bar(data, x='Date', y='Volume', template='seaborn')
fig2.update_traces(marker_color='#7A9E9F')
fig2.update_layout(title_text="Volume of Stocks Traded Over Time", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, height=400, width=700)
g2.plotly_chart(fig2, use_container_width=True)

# Moving Averages
short_window = 40
long_window = 100
data['Short_MA'] = data['Close'].rolling(window=short_window).mean()
data['Long_MA'] = data['Close'].rolling(window=long_window).mean()
fig3 = px.line(data, x='Date', y='Close', template='seaborn')
fig3.add_scatter(x=data['Date'], y=data['Short_MA'], mode='lines', line=dict(color="red"), name=f'Short {short_window}D MA')
fig3.add_scatter(x=data['Date'], y=data['Long_MA'], mode='lines', line=dict(color="blue"), name=f'Long {long_window}D MA')
fig3.update_layout(title_text="Stock Price with Moving Averages", title_x=0, margin=dict(l=20, r=20, b=20, t=30), yaxis_title=None, xaxis_title=None, legend=dict(orientation="h", yanchor="bottom", y=0.9, xanchor="right", x=0.99), height=400, width=700)
g3.plotly_chart(fig3, use_container_width=True)

## ............................................... ##
# Daily Returns
g4, g5, g6 = st.columns((1,1,1))
data['Daily_Returns'] = data['Close'].pct_change()
fig4 = px.line(data, x='Date', y='Daily_Returns', template='seaborn')
fig4.update_traces(line_color='#E76F51')
fig4.update_layout(title_text="Daily Returns", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g4.plotly_chart(fig4, use_container_width=True)

# Cumulative Returns
data['Cumulative_Returns'] = (1 + data['Daily_Returns']).cumprod()
fig5 = px.line(data, x='Date', y='Cumulative_Returns', template='seaborn')
fig5.update_traces(line_color='#2A9D8F')
fig5.update_layout(title_text="Cumulative Returns", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g5.plotly_chart(fig5, use_container_width=True)
# Stock Price Distribution
fig6 = px.histogram(data, x='Close', template='seaborn', nbins=50)
fig6.update_traces(marker_color='#F4A261')
fig6.update_layout(title_text="Stock Price Distribution", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g6.plotly_chart(fig6, use_container_width=True)

## ............................................... ##

# Bollinger Bands
g7, g8, g9 = st.columns((1,1,1))
rolling_mean = data['Close'].rolling(window=20).mean()
rolling_std = data['Close'].rolling(window=20).std()
data['Bollinger_Upper'] = rolling_mean + (rolling_std * 2)
data['Bollinger_Lower'] = rolling_mean - (rolling_std * 2)
fig7 = px.line(data, x='Date', y='Close', template='seaborn')
fig7.add_scatter(x=data['Date'], y=data['Bollinger_Upper'], mode='lines', line=dict(color="green"), name='Upper Bollinger Band')
fig7.add_scatter(x=data['Date'], y=data['Bollinger_Lower'], mode='lines', line=dict(color="red"), name='Lower Bollinger Band')
fig7.update_layout(title_text="Bollinger Bands", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g7.plotly_chart(fig7, use_container_width=True)

# Stock Price vs. Volume
fig8 = px.line(data, x='Date', y='Close', template='seaborn')
fig8.add_bar(x=data['Date'], y=data['Volume'], name='Volume')
fig8.update_layout(title_text="Stock Price vs. Volume", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g8.plotly_chart(fig8, use_container_width=True)

# MACD
data['12D_EMA'] = data['Close'].ewm(span=12, adjust=False).mean()
data['26D_EMA'] = data['Close'].ewm(span=26, adjust=False).mean()
data['MACD'] = data['12D_EMA'] - data['26D_EMA']
data['Signal_Line'] = data['MACD'].ewm(span=9, adjust=False).mean()
fig9 = px.line(data, x='Date', y='MACD', template='seaborn', title="MACD")
fig9.add_scatter(x=data['Date'], y=data['Signal_Line'], mode='lines', line=dict(color="orange"), name='Signal Line')
fig9.update_layout(title_text="MACD", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g9.plotly_chart(fig9, use_container_width=True)

### ............................................... ##

# Relative Strength Index (RSI)
g10, g11, g12 = st.columns((1,1,1))
delta = data['Close'].diff()
gain = (delta.where(delta > 0, 0)).fillna(0)
loss = (-delta.where(delta < 0, 0)).fillna(0)
avg_gain = gain.rolling(window=14).mean()
avg_loss = loss.rolling(window=14).mean()
rs = avg_gain / avg_loss
data['RSI'] = 100 - (100 / (1 + rs))
fig10 = px.line(data, x='Date', y='RSI', template='seaborn')
fig10.update_layout(title_text="Relative Strength Index (RSI)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g10.plotly_chart(fig10, use_container_width=True)

# Candlestick Chart
fig11 = go.Figure(data=[go.Candlestick(x=data['Date'],
                open=data['Open'],
                high=data['High'],
                low=data['Low'],
                close=data['Close'])])
fig11.update_layout(title_text="Candlestick Chart", title_x=0, margin=dict(l=0, r=10, b=10, t=30))
g11.plotly_chart(fig11, use_container_width=True)

# Correlation Matrix
corr_matrix = data[['Open', 'High', 'Low', 'Close', 'Volume']].corr()
fig12 = px.imshow(corr_matrix, template='seaborn')
fig12.update_layout(title_text="Correlation Matrix", title_x=0, margin=dict(l=0, r=10, b=10, t=30))
g12.plotly_chart(fig12, use_container_width=True)

### ............................................... ##
# Price Rate of Change (ROC)
g13, g14, g15 = st.columns((1,1,1))
n = 12
data['ROC'] = ((data['Close'] - data['Close'].shift(n)) / data['Close'].shift(n)) * 100
fig13 = px.line(data, x='Date', y='ROC', template='seaborn')
fig13.update_layout(title_text="Price Rate of Change (ROC)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g13.plotly_chart(fig13, use_container_width=True)

# Stochastic Oscillator
low_min = data['Low'].rolling(window=14).min()
high_max = data['High'].rolling(window=14).max()
data['%K'] = (100 * (data['Close'] - low_min) / (high_max - low_min))
data['%D'] = data['%K'].rolling(window=3).mean()
fig14 = px.line(data, x='Date', y='%K', template='seaborn')
fig14.add_scatter(x=data['Date'], y=data['%D'], mode='lines', line=dict(color="orange"), name='%D (3-day SMA of %K)')
fig14.update_layout(title_text="Stochastic Oscillator", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g14.plotly_chart(fig14, use_container_width=True)

# Historical Volatility
data['Log_Return'] = np.log(data['Close'] / data['Close'].shift(1))
data['Historical_Volatility'] = data['Log_Return'].rolling(window=252).std() * np.sqrt(252)
fig15 = px.line(data, x='Date', y='Historical_Volatility', template='seaborn')
fig15.update_layout(title_text="Historical Volatility (252-day)", title_x=0, margin=dict(l=0, r=10, b=10, t=30), yaxis_title=None, xaxis_title=None)
g15.plotly_chart(fig15, use_container_width=True)

### ............................................... ##

# Visualizing the data and want to get the data when hovering over the graph
st.subheader('Closing Price vs Time Chart')
fig1 = go.Figure()
fig1.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close'))
fig1.layout.update(hovermode='x')
# Display the figure in Streamlit
st.plotly_chart(fig1,use_container_width=True)

st.subheader('Closing Price vs Time Chart with 100MA')
ma100 = data['Close'].rolling(100).mean()
fig2 = go.Figure()
# Add traces for 100MA and Closing Price
fig2.add_trace(go.Scatter(x=data.index, y=ma100, mode='lines', name='100MA'))
fig2.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Closing Price'))
fig2.layout.update(hovermode='x')
# Display the figure in Streamlit
st.plotly_chart(fig2,use_container_width=True)

st.subheader('Closing Price vs Time Chart with 100MA and 200MA')
ma100 = data['Close'].rolling(100).mean()
ma200 = data['Close'].rolling(200).mean()
fig3 = go.Figure()
# Add traces for 100MA and Closing Price
fig3.add_trace(go.Scatter(x=data.index, y=ma100, mode='lines', name='100MA'))
fig3.add_trace(go.Scatter(x=data.index, y=ma200, mode='lines', name='200MA'))
fig3.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Closing Price'))
fig3.layout.update(hovermode='x')

# Display the figure in Streamlit
st.plotly_chart(fig3,use_container_width=True)

# Splitting the data into training and testing data
data_training = pd.DataFrame(data['Close'][0:int(len(data)*0.70)])
data_testing = pd.DataFrame(data['Close'][int(len(data)*0.70): int(len(data))])

# Scaling the data
scaler = MinMaxScaler(feature_range=(0,1))
data_training_array = scaler.fit_transform(data_training)

# load the model
model = load_model('best_model_MAPI.h5')

# Testing the model
past_100_days = data_training.tail(100)
final_df = pd.concat([past_100_days,data_testing], ignore_index=True)
input_data = scaler.fit_transform(final_df)

x_test = []
y_test = []
for i in range(100, input_data.shape[0]):
    x_test.append(input_data[i-100:i])
    y_test.append(input_data[i,0])

x_test, y_test = np.array(x_test), np.array(y_test)

y_predicted = model.predict(x_test)

scaler = scaler.scale_
scale_factor = 1/scaler[0]
y_predicted = y_predicted * scale_factor
y_test = y_test * scale_factor

# Visualizing the results
st.subheader('Predictions vs Actual')
fig4 = go.Figure()
# Add traces for Actual and Predicted Price
fig4.add_trace(go.Scatter(x=data.index[-len(y_test):], y=y_test, mode='lines', name='Actual Price'))
fig4.add_trace(go.Scatter(x=data.index[-len(y_predicted):], y=y_predicted[:,0], mode='lines', name='Predicted Price'))
fig4.layout.update(hovermode='x')
# Display the figure in Streamlit
st.plotly_chart(fig4,use_container_width=True)

st.sidebar.markdown("----")
st.sidebar.markdown("© 2023 Stocks Prediction App")