Spaces:
Runtime error
Runtime error
File size: 5,114 Bytes
5d52c32 6c226f9 8e787d3 6c226f9 d790c0b 88183ad 8c54c03 6c226f9 9d6fa91 66efbc3 d790c0b 6c226f9 8c54c03 6c226f9 5d52c32 8c54c03 3c0cd8e 6c226f9 8c54c03 6c226f9 8c54c03 d790c0b 8c54c03 d790c0b 8c54c03 d790c0b 8c54c03 d790c0b 8c54c03 d790c0b 8c54c03 d790c0b 8c54c03 d790c0b 8c54c03 5d52c32 8c54c03 6c226f9 66efbc3 8c54c03 d790c0b 6c226f9 b97a3c2 0a7fcda 8c54c03 6c226f9 47407ef 6c226f9 3ce82e9 8c54c03 3c0cd8e 8c54c03 3c0cd8e 8c54c03 3c0cd8e 3ce82e9 8c54c03 6c226f9 8c54c03 6c226f9 8c54c03 6c226f9 7097513 3ce82e9 8c54c03 7097513 6c226f9 8c54c03 6c226f9 8c54c03 6c226f9 3c0cd8e 6c226f9 47407ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import spaces
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
# Available models to choose from
MODEL_OPTIONS = ["BUT-FIT/DeCRED-base", "BUT-FIT/DeCRED-small", "BUT-FIT/ED-base", "BUT-FIT/ED-small"]
DEFAULT_MODEL = MODEL_OPTIONS[0]
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
# Function to initialize pipeline based on model selection
def initialize_pipeline(model_name):
pipe = pipeline(
task="automatic-speech-recognition",
model=model_name,
feature_extractor=model_name,
chunk_length_s=30,
device=device,
trust_remote_code=True
)
pipe.type = "seq2seq"
return pipe
# Initialize the pipeline with a default model (it will be updated after user selects one)
pipe = initialize_pipeline(DEFAULT_MODEL)
pipe.type = "seq2seq"
@spaces.GPU
def transcribe(inputs, selected_model):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
# Update the pipeline with the selected model
pipe = initialize_pipeline(selected_model)
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
@spaces.GPU
def yt_transcribe(yt_url, selected_model, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
# Update the pipeline with the selected model
pipe = initialize_pipeline(selected_model)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
return html_embed_str, text
demo = gr.Blocks(theme=gr.themes.Ocean())
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
],
outputs="text",
title="Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Select a model from the dropdown."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
],
outputs="text",
title="Transcribe Audio",
description=(
"Transcribe audio files with the click of a button! Select a model from the dropdown."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Dropdown(choices=MODEL_OPTIONS, label="Model", value=DEFAULT_MODEL)
],
outputs=["html", "text"],
title="Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Select a model from the dropdown."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
demo.queue().launch(ssr_mode=False)
|