Spaces:
Running
on
Zero
Running
on
Zero
Upload 4 files
Browse filesAdded dev scripts
- 1s_audio.wav +0 -0
- requirements_dev.txt +17 -0
- settings.py +7 -0
- whisper_cs_dev.py +318 -0
1s_audio.wav
ADDED
|
Binary file (33.4 kB). View file
|
|
|
requirements_dev.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers
|
| 2 |
+
numpy<2
|
| 3 |
+
hf_transfer
|
| 4 |
+
torch
|
| 5 |
+
pyannote.audio
|
| 6 |
+
yt-dlp
|
| 7 |
+
gradio==5.15.0
|
| 8 |
+
torchaudio==2.2.1
|
| 9 |
+
librosa==0.10.1
|
| 10 |
+
ffmpeg-python==0.2.0
|
| 11 |
+
aina-gradio-theme==2.3
|
| 12 |
+
spaces
|
| 13 |
+
peft==0.11.1
|
| 14 |
+
whisper_timestamped
|
| 15 |
+
typing
|
| 16 |
+
faster_whisper
|
| 17 |
+
ctranslate2==4.4.0
|
settings.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
DEBUG_MODE = True
|
| 2 |
+
MODEL_PATH_V2 = "langtech-veu/whisper-timestamped-cs"
|
| 3 |
+
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
| 4 |
+
LEFT_CHANNEL_TEMP_PATH = "temp_mono_speaker2.wav"
|
| 5 |
+
RIGHT_CHANNEL_TEMP_PATH = "temp_mono_speaker1.wav"
|
| 6 |
+
RESAMPLING_FREQ = 16000
|
| 7 |
+
FAKE_AUDIO_PATH = "1s_audio.wav"
|
whisper_cs_dev.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydub import AudioSegment
|
| 2 |
+
import os
|
| 3 |
+
import torchaudio
|
| 4 |
+
import torch
|
| 5 |
+
import re
|
| 6 |
+
import whisper_timestamped as whisper_ts
|
| 7 |
+
from faster_whisper import WhisperModel
|
| 8 |
+
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V2, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, FAKE_AUDIO_PATH, RESAMPLING_FREQ
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_settings():
|
| 12 |
+
|
| 13 |
+
if DEBUG_MODE: print(f"Entering get_settings function...")
|
| 14 |
+
|
| 15 |
+
is_cuda_available = torch.cuda.is_available()
|
| 16 |
+
if is_cuda_available:
|
| 17 |
+
device = "cuda"
|
| 18 |
+
compute_type = "float16"
|
| 19 |
+
else:
|
| 20 |
+
device = "cpu"
|
| 21 |
+
compute_type = "int8"
|
| 22 |
+
if DEBUG_MODE: print(f"is_cuda_available: {is_cuda_available}")
|
| 23 |
+
if DEBUG_MODE: print(f"device: {device}")
|
| 24 |
+
if DEBUG_MODE: print(f"compute_type: {compute_type}")
|
| 25 |
+
|
| 26 |
+
if DEBUG_MODE: print(f"Exited get_settings function.")
|
| 27 |
+
|
| 28 |
+
return device, compute_type
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def load_model(use_v2_fast, device, compute_type):
|
| 32 |
+
|
| 33 |
+
if DEBUG_MODE: print(f"Entering load_model function...")
|
| 34 |
+
|
| 35 |
+
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
|
| 36 |
+
|
| 37 |
+
if use_v2_fast:
|
| 38 |
+
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2_FAST} using {device} with {compute_type}...")
|
| 39 |
+
model = WhisperModel(
|
| 40 |
+
MODEL_PATH_V2_FAST,
|
| 41 |
+
device = device,
|
| 42 |
+
compute_type = compute_type,
|
| 43 |
+
)
|
| 44 |
+
else:
|
| 45 |
+
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2} using {device} with {compute_type}...")
|
| 46 |
+
# TODO add compute_type to load model
|
| 47 |
+
model = whisper_ts.load_model(
|
| 48 |
+
MODEL_PATH_V2,
|
| 49 |
+
device = device,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# HACK we need to do this for strange reasons.
|
| 53 |
+
# If we don't do this, we get:
|
| 54 |
+
#Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
|
| 55 |
+
fake_model = whisper_ts.load_model(MODEL_PATH_V2, device=device)
|
| 56 |
+
|
| 57 |
+
if DEBUG_MODE: print(f"Exiting load_model function...")
|
| 58 |
+
|
| 59 |
+
return model, fake_model
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def split_input_stereo_channels(audio_path):
|
| 63 |
+
|
| 64 |
+
if DEBUG_MODE: print(f"Entering split_input_stereo_channels function...")
|
| 65 |
+
|
| 66 |
+
ext = os.path.splitext(audio_path)[1].lower()
|
| 67 |
+
|
| 68 |
+
if ext == ".wav":
|
| 69 |
+
audio = AudioSegment.from_wav(audio_path)
|
| 70 |
+
elif ext == ".mp3":
|
| 71 |
+
audio = AudioSegment.from_file(audio_path, format="mp3")
|
| 72 |
+
else:
|
| 73 |
+
raise ValueError(f"Unsupported file format for: {audio_path}")
|
| 74 |
+
|
| 75 |
+
channels = audio.split_to_mono()
|
| 76 |
+
|
| 77 |
+
if len(channels) != 2:
|
| 78 |
+
raise ValueError(f"Audio {audio_path} has {len(channels)} channels (instead of 2).")
|
| 79 |
+
|
| 80 |
+
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
|
| 81 |
+
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
|
| 82 |
+
|
| 83 |
+
if DEBUG_MODE: print(f"Exited split_input_stereo_channels function.")
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def format_audio(audio_path):
|
| 87 |
+
|
| 88 |
+
if DEBUG_MODE: print(f"Entering format_audio function...")
|
| 89 |
+
|
| 90 |
+
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 91 |
+
|
| 92 |
+
if input_audio.shape[0] == 2:
|
| 93 |
+
input_audio = torch.mean(input_audio, dim=0, keepdim=True)
|
| 94 |
+
|
| 95 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=RESAMPLING_FREQ)
|
| 96 |
+
input_audio = resampler(input_audio)
|
| 97 |
+
input_audio = input_audio.squeeze()
|
| 98 |
+
|
| 99 |
+
if DEBUG_MODE: print(f"Exited format_audio function.")
|
| 100 |
+
|
| 101 |
+
return input_audio, RESAMPLING_FREQ
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def process_waveforms():
|
| 105 |
+
|
| 106 |
+
if DEBUG_MODE: print(f"Entering process_waveforms function...")
|
| 107 |
+
|
| 108 |
+
left_waveform, _ = format_audio(LEFT_CHANNEL_TEMP_PATH)
|
| 109 |
+
right_waveform, _ = format_audio(RIGHT_CHANNEL_TEMP_PATH)
|
| 110 |
+
|
| 111 |
+
# TODO should this be equal to compute_type?
|
| 112 |
+
left_waveform = left_waveform.numpy().astype("float32")
|
| 113 |
+
right_waveform = right_waveform.numpy().astype("float32")
|
| 114 |
+
|
| 115 |
+
if DEBUG_MODE: print(f"Exited process_waveforms function.")
|
| 116 |
+
|
| 117 |
+
return left_waveform, right_waveform
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def transcribe_audio_no_fast_model(model, audio_path):
|
| 121 |
+
|
| 122 |
+
if DEBUG_MODE: print(f"Entering transcribe_audio_no_fast_model function...")
|
| 123 |
+
|
| 124 |
+
result = whisper_ts.transcribe(
|
| 125 |
+
model,
|
| 126 |
+
audio_path,
|
| 127 |
+
beam_size=5,
|
| 128 |
+
best_of=5,
|
| 129 |
+
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 130 |
+
vad=False,
|
| 131 |
+
detect_disfluencies=True,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
words = []
|
| 135 |
+
for segment in result.get('segments', []):
|
| 136 |
+
for word in segment.get('words', []):
|
| 137 |
+
word_text = word.get('word', '').strip()
|
| 138 |
+
if word_text.startswith(' '):
|
| 139 |
+
word_text = word_text[1:]
|
| 140 |
+
|
| 141 |
+
words.append({
|
| 142 |
+
'word': word_text,
|
| 143 |
+
'start': word.get('start', 0),
|
| 144 |
+
'end': word.get('end', 0),
|
| 145 |
+
'confidence': word.get('confidence', 0)
|
| 146 |
+
})
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
'audio_path': audio_path,
|
| 150 |
+
'text': result['text'].strip(),
|
| 151 |
+
'segments': result.get('segments', []),
|
| 152 |
+
'words': words,
|
| 153 |
+
'duration': result.get('duration', 0),
|
| 154 |
+
'success': True
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
if DEBUG_MODE: print(f"Exited transcribe_audio_no_fast_model function.")
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def transcribe_channels(left_waveform, right_waveform, model, use_v2_fast, fake_model):
|
| 161 |
+
|
| 162 |
+
if DEBUG_MODE: print(f"Entering transcribe_channels function...")
|
| 163 |
+
|
| 164 |
+
# HACK we need to do this for strange reasons.
|
| 165 |
+
# If we don't do this, we get:
|
| 166 |
+
#Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
|
| 167 |
+
fake_result = whisper_ts.transcribe(
|
| 168 |
+
fake_model,
|
| 169 |
+
FAKE_AUDIO_PATH,
|
| 170 |
+
beam_size=1,
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
if use_v2_fast:
|
| 174 |
+
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
| 175 |
+
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 176 |
+
left_result = list(left_result)
|
| 177 |
+
right_result = list(right_result)
|
| 178 |
+
else:
|
| 179 |
+
left_result = transcribe_audio_no_fast_model(model, left_waveform)
|
| 180 |
+
right_result = transcribe_audio_no_fast_model(model, right_waveform)
|
| 181 |
+
|
| 182 |
+
if DEBUG_MODE: print(f"Exited transcribe_channels function.")
|
| 183 |
+
|
| 184 |
+
return left_result, right_result
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# TODO refactor and rename this function
|
| 188 |
+
def post_process_transcription(transcription, max_repeats=2):
|
| 189 |
+
|
| 190 |
+
tokens = re.findall(r'\b\w+\'?\w*\b[.,!?]?', transcription)
|
| 191 |
+
|
| 192 |
+
cleaned_tokens = []
|
| 193 |
+
repetition_count = 0
|
| 194 |
+
previous_token = None
|
| 195 |
+
|
| 196 |
+
for token in tokens:
|
| 197 |
+
reduced_token = re.sub(r"(\w{1,3})(\1{2,})", "", token)
|
| 198 |
+
|
| 199 |
+
if reduced_token == previous_token:
|
| 200 |
+
repetition_count += 1
|
| 201 |
+
if repetition_count <= max_repeats:
|
| 202 |
+
cleaned_tokens.append(reduced_token)
|
| 203 |
+
else:
|
| 204 |
+
repetition_count = 1
|
| 205 |
+
cleaned_tokens.append(reduced_token)
|
| 206 |
+
|
| 207 |
+
previous_token = reduced_token
|
| 208 |
+
|
| 209 |
+
cleaned_transcription = " ".join(cleaned_tokens)
|
| 210 |
+
cleaned_transcription = re.sub(r'\s+', ' ', cleaned_transcription).strip()
|
| 211 |
+
|
| 212 |
+
return cleaned_transcription
|
| 213 |
+
|
| 214 |
+
# TODO not used right now, decide to use it or not
|
| 215 |
+
def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
| 216 |
+
segments = re.split(r'(\[SPEAKER_\d{2}\])', transcription_text)
|
| 217 |
+
merged_transcription = ''
|
| 218 |
+
current_speaker = None
|
| 219 |
+
current_segment = []
|
| 220 |
+
|
| 221 |
+
for i in range(1, len(segments) - 1, 2):
|
| 222 |
+
speaker_tag = segments[i]
|
| 223 |
+
text = segments[i + 1].strip()
|
| 224 |
+
|
| 225 |
+
speaker = re.search(r'\d{2}', speaker_tag).group()
|
| 226 |
+
|
| 227 |
+
if speaker == current_speaker:
|
| 228 |
+
current_segment.append(text)
|
| 229 |
+
else:
|
| 230 |
+
if current_speaker is not None:
|
| 231 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
| 232 |
+
current_speaker = speaker
|
| 233 |
+
current_segment = [text]
|
| 234 |
+
|
| 235 |
+
if current_speaker is not None:
|
| 236 |
+
merged_transcription += f'[SPEAKER_{current_speaker}] {" ".join(current_segment)}\n'
|
| 237 |
+
|
| 238 |
+
return merged_transcription.strip()
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def get_segments(result, speaker_label, use_v2_fast):
|
| 242 |
+
|
| 243 |
+
if DEBUG_MODE: print(f"Entering get_segments function...")
|
| 244 |
+
|
| 245 |
+
if use_v2_fast:
|
| 246 |
+
segments = result
|
| 247 |
+
final_segments = [
|
| 248 |
+
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 249 |
+
for seg in segments if seg.text
|
| 250 |
+
]
|
| 251 |
+
else:
|
| 252 |
+
segments = result.get("segments", [])
|
| 253 |
+
if not segments:
|
| 254 |
+
final_segments = []
|
| 255 |
+
final_segments = [
|
| 256 |
+
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label,
|
| 257 |
+
post_process_transcription(seg.get("text", "").strip()))
|
| 258 |
+
for seg in segments if seg.get("text")
|
| 259 |
+
]
|
| 260 |
+
|
| 261 |
+
if DEBUG_MODE: print(f"EXited get_segments function.")
|
| 262 |
+
|
| 263 |
+
return final_segments
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def post_process_transcripts(left_result, right_result, use_v2_fast):
|
| 267 |
+
|
| 268 |
+
if DEBUG_MODE: print(f"Entering post_process_transcripts function...")
|
| 269 |
+
|
| 270 |
+
left_segs = get_segments(left_result, "Speaker 1", use_v2_fast)
|
| 271 |
+
right_segs = get_segments(right_result, "Speaker 2", use_v2_fast)
|
| 272 |
+
|
| 273 |
+
merged_transcript = sorted(
|
| 274 |
+
left_segs + right_segs,
|
| 275 |
+
key=lambda x: float(x[0]) if x[0] is not None else float("inf")
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
clean_output = ""
|
| 279 |
+
for start, end, speaker, text in merged_transcript:
|
| 280 |
+
clean_output += f"[{speaker}]: {text}\n"
|
| 281 |
+
clean_output = clean_output.strip()
|
| 282 |
+
|
| 283 |
+
if DEBUG_MODE: print(f"Exited post_process_transcripts function.")
|
| 284 |
+
|
| 285 |
+
return clean_output
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def cleanup_temp_files(*file_paths):
|
| 289 |
+
|
| 290 |
+
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
|
| 291 |
+
|
| 292 |
+
if DEBUG_MODE: print(f"File paths to remove: {file_paths}")
|
| 293 |
+
|
| 294 |
+
for path in file_paths:
|
| 295 |
+
if path and os.path.exists(path):
|
| 296 |
+
if DEBUG_MODE: print(f"Removing path: {path}")
|
| 297 |
+
os.remove(path)
|
| 298 |
+
|
| 299 |
+
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def generate(audio_path, use_v2_fast):
|
| 303 |
+
|
| 304 |
+
if DEBUG_MODE: print(f"Entering generate function...")
|
| 305 |
+
|
| 306 |
+
device, compute_type = get_settings()
|
| 307 |
+
model, fake_model = load_model(use_v2_fast, device, compute_type)
|
| 308 |
+
split_input_stereo_channels(audio_path)
|
| 309 |
+
left_waveform, right_waveform = process_waveforms()
|
| 310 |
+
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model, use_v2_fast, fake_model)
|
| 311 |
+
output = post_process_transcripts(left_result, right_result, use_v2_fast)
|
| 312 |
+
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
| 313 |
+
|
| 314 |
+
if DEBUG_MODE: print(f"Exited generate function.")
|
| 315 |
+
|
| 316 |
+
return output
|
| 317 |
+
|
| 318 |
+
|