Spaces:
Running
on
Zero
Running
on
Zero
release_v1.0_v2_fast (#45)
Browse files- Release v1.0 including v2_fast improvements and dynamic compute_type selection (2b7ff2f0528ce3f4843b67e57185c7025b0433a2)
- Update: code cleaning (a7c60589b45c3fbf0c0eefec378f3ac578bc4d65)
- app.py +2 -1
- settings.py +4 -2
- whisper_cs_dev.py +81 -144
app.py
CHANGED
|
@@ -22,7 +22,8 @@ with gr.Blocks() as demo:
|
|
| 22 |
gr.Markdown(description_string)
|
| 23 |
with gr.Row():
|
| 24 |
with gr.Column(scale=1):
|
| 25 |
-
model_version = gr.Dropdown(label="Model Version", choices=["v2_fast", "
|
|
|
|
| 26 |
input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
|
| 27 |
|
| 28 |
with gr.Column(scale=1):
|
|
|
|
| 22 |
gr.Markdown(description_string)
|
| 23 |
with gr.Row():
|
| 24 |
with gr.Column(scale=1):
|
| 25 |
+
model_version = gr.Dropdown(label="Model Version", choices=["v2_fast", "v1.0"], value="v2_fast")
|
| 26 |
+
|
| 27 |
input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio")
|
| 28 |
|
| 29 |
with gr.Column(scale=1):
|
settings.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
DEBUG_MODE = True
|
| 2 |
-
|
| 3 |
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
| 4 |
LEFT_CHANNEL_TEMP_PATH = "temp_mono_speaker2.wav"
|
| 5 |
RIGHT_CHANNEL_TEMP_PATH = "temp_mono_speaker1.wav"
|
| 6 |
-
RESAMPLING_FREQ = 16000
|
|
|
|
|
|
|
|
|
| 1 |
DEBUG_MODE = True
|
| 2 |
+
MODEL_PATH_V1 = "projecte-aina/whisper-large-v3-tiny-caesar"
|
| 3 |
MODEL_PATH_V2_FAST = "langtech-veu/faster-whisper-timestamped-cs"
|
| 4 |
LEFT_CHANNEL_TEMP_PATH = "temp_mono_speaker2.wav"
|
| 5 |
RIGHT_CHANNEL_TEMP_PATH = "temp_mono_speaker1.wav"
|
| 6 |
+
RESAMPLING_FREQ = 16000
|
| 7 |
+
BATCH_SIZE = 1
|
| 8 |
+
TASK = "transcribe"
|
whisper_cs_dev.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from faster_whisper import WhisperModel
|
| 2 |
-
|
| 3 |
from pydub import AudioSegment
|
| 4 |
import os
|
| 5 |
import torchaudio
|
|
@@ -10,8 +10,9 @@ import sys
|
|
| 10 |
from pathlib import Path
|
| 11 |
import glob
|
| 12 |
import ctypes
|
|
|
|
| 13 |
|
| 14 |
-
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST,
|
| 15 |
|
| 16 |
def load_cudnn():
|
| 17 |
|
|
@@ -54,54 +55,46 @@ def load_cudnn():
|
|
| 54 |
|
| 55 |
def get_settings():
|
| 56 |
|
| 57 |
-
if DEBUG_MODE: print(f"Entering get_settings function...")
|
| 58 |
-
|
| 59 |
is_cuda_available = torch.cuda.is_available()
|
| 60 |
if is_cuda_available:
|
| 61 |
device = "cuda"
|
| 62 |
-
compute_type = "
|
|
|
|
| 63 |
else:
|
| 64 |
device = "cpu"
|
| 65 |
-
compute_type = "
|
| 66 |
-
if DEBUG_MODE: print(f"is_cuda_available: {is_cuda_available}")
|
| 67 |
-
if DEBUG_MODE: print(f"device: {device}")
|
| 68 |
-
if DEBUG_MODE: print(f"compute_type: {compute_type}")
|
| 69 |
|
| 70 |
-
if DEBUG_MODE: print(f"
|
| 71 |
|
| 72 |
return device, compute_type
|
| 73 |
|
| 74 |
|
|
|
|
| 75 |
def load_model(use_v2_fast, device, compute_type):
|
| 76 |
|
| 77 |
-
if DEBUG_MODE:
|
| 78 |
-
|
| 79 |
-
if DEBUG_MODE: print(f"use_v2_fast: {use_v2_fast}")
|
| 80 |
|
| 81 |
if use_v2_fast:
|
| 82 |
-
if DEBUG_MODE: print(f"Loading {MODEL_PATH_V2_FAST} using {device} with {compute_type}...")
|
| 83 |
model = WhisperModel(
|
| 84 |
MODEL_PATH_V2_FAST,
|
| 85 |
device = device,
|
| 86 |
compute_type = compute_type,
|
| 87 |
)
|
| 88 |
else:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
device
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
return model
|
| 99 |
|
| 100 |
|
| 101 |
def split_input_stereo_channels(audio_path):
|
| 102 |
|
| 103 |
-
if DEBUG_MODE: print(f"Entering split_input_stereo_channels function...")
|
| 104 |
-
|
| 105 |
ext = os.path.splitext(audio_path)[1].lower()
|
| 106 |
|
| 107 |
if ext == ".wav":
|
|
@@ -109,22 +102,33 @@ def split_input_stereo_channels(audio_path):
|
|
| 109 |
elif ext == ".mp3":
|
| 110 |
audio = AudioSegment.from_file(audio_path, format="mp3")
|
| 111 |
else:
|
| 112 |
-
raise ValueError(f"Unsupported file format for: {audio_path}")
|
| 113 |
|
| 114 |
channels = audio.split_to_mono()
|
| 115 |
|
| 116 |
if len(channels) != 2:
|
| 117 |
-
raise ValueError(f"Audio {audio_path} has {len(channels)} channels (instead of 2).")
|
| 118 |
|
| 119 |
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
|
| 120 |
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
|
| 121 |
|
| 122 |
-
if DEBUG_MODE: print(f"Exited split_input_stereo_channels function.")
|
| 123 |
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 130 |
|
|
@@ -135,83 +139,36 @@ def format_audio(audio_path):
|
|
| 135 |
input_audio = resampler(input_audio)
|
| 136 |
input_audio = input_audio.squeeze()
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
return input_audio, RESAMPLING_FREQ
|
| 141 |
|
|
|
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
if DEBUG_MODE: print(f"Entering process_waveforms function...")
|
| 146 |
|
| 147 |
-
left_waveform, _ = format_audio(LEFT_CHANNEL_TEMP_PATH)
|
| 148 |
-
right_waveform, _ = format_audio(RIGHT_CHANNEL_TEMP_PATH)
|
| 149 |
|
| 150 |
-
|
| 151 |
-
left_waveform = left_waveform.numpy().astype("float16")
|
| 152 |
-
right_waveform = right_waveform.numpy().astype("float16")
|
| 153 |
|
| 154 |
-
|
|
|
|
| 155 |
|
| 156 |
return left_waveform, right_waveform
|
| 157 |
|
| 158 |
|
| 159 |
-
def
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
result = whisper_ts.transcribe(
|
| 164 |
-
model,
|
| 165 |
-
audio_path,
|
| 166 |
-
beam_size=5,
|
| 167 |
-
best_of=5,
|
| 168 |
-
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
| 169 |
-
vad=False,
|
| 170 |
-
detect_disfluencies=True,
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
words = []
|
| 174 |
-
for segment in result.get('segments', []):
|
| 175 |
-
for word in segment.get('words', []):
|
| 176 |
-
word_text = word.get('word', '').strip()
|
| 177 |
-
if word_text.startswith(' '):
|
| 178 |
-
word_text = word_text[1:]
|
| 179 |
-
|
| 180 |
-
words.append({
|
| 181 |
-
'word': word_text,
|
| 182 |
-
'start': word.get('start', 0),
|
| 183 |
-
'end': word.get('end', 0),
|
| 184 |
-
'confidence': word.get('confidence', 0)
|
| 185 |
-
})
|
| 186 |
-
|
| 187 |
-
return {
|
| 188 |
-
'audio_path': audio_path,
|
| 189 |
-
'text': result['text'].strip(),
|
| 190 |
-
'segments': result.get('segments', []),
|
| 191 |
-
'words': words,
|
| 192 |
-
'duration': result.get('duration', 0),
|
| 193 |
-
'success': True
|
| 194 |
-
}
|
| 195 |
-
|
| 196 |
-
if DEBUG_MODE: print(f"Exited transcribe_audio_no_fast_model function.")
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
def transcribe_channels(left_waveform, right_waveform, model, use_v2_fast):
|
| 200 |
|
| 201 |
-
if DEBUG_MODE: print(f"Entering transcribe_channels function...")
|
| 202 |
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
| 208 |
-
left_result = list(left_result)
|
| 209 |
-
right_result = list(right_result)
|
| 210 |
-
else:
|
| 211 |
-
left_result = transcribe_audio_no_fast_model(model, left_waveform)
|
| 212 |
-
right_result = transcribe_audio_no_fast_model(model, right_waveform)
|
| 213 |
|
| 214 |
-
|
|
|
|
| 215 |
|
| 216 |
return left_result, right_result
|
| 217 |
|
|
@@ -270,37 +227,21 @@ def post_merge_consecutive_segments_from_text(transcription_text: str) -> str:
|
|
| 270 |
return merged_transcription.strip()
|
| 271 |
|
| 272 |
|
| 273 |
-
def get_segments(result, speaker_label
|
| 274 |
-
|
| 275 |
-
if DEBUG_MODE: print(f"Entering get_segments function...")
|
| 276 |
-
|
| 277 |
-
if use_v2_fast:
|
| 278 |
-
segments = result
|
| 279 |
-
final_segments = [
|
| 280 |
-
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 281 |
-
for seg in segments if seg.text
|
| 282 |
-
]
|
| 283 |
-
else:
|
| 284 |
-
segments = result.get("segments", [])
|
| 285 |
-
if not segments:
|
| 286 |
-
final_segments = []
|
| 287 |
-
final_segments = [
|
| 288 |
-
(seg.get("start", 0.0), seg.get("end", 0.0), speaker_label,
|
| 289 |
-
post_process_transcription(seg.get("text", "").strip()))
|
| 290 |
-
for seg in segments if seg.get("text")
|
| 291 |
-
]
|
| 292 |
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
return final_segments
|
| 296 |
|
| 297 |
|
| 298 |
-
def post_process_transcripts(left_result, right_result
|
| 299 |
-
|
| 300 |
-
if DEBUG_MODE: print(f"Entering post_process_transcripts function...")
|
| 301 |
|
| 302 |
-
left_segs = get_segments(left_result, "Speaker 1"
|
| 303 |
-
right_segs = get_segments(right_result, "Speaker 2"
|
| 304 |
|
| 305 |
merged_transcript = sorted(
|
| 306 |
left_segs + right_segs,
|
|
@@ -312,47 +253,43 @@ def post_process_transcripts(left_result, right_result, use_v2_fast):
|
|
| 312 |
clean_output += f"[{speaker}]: {text}\n"
|
| 313 |
clean_output = clean_output.strip()
|
| 314 |
|
| 315 |
-
if DEBUG_MODE: print(f"Exited post_process_transcripts function.")
|
| 316 |
-
|
| 317 |
return clean_output
|
| 318 |
|
| 319 |
|
| 320 |
def cleanup_temp_files(*file_paths):
|
| 321 |
-
|
| 322 |
-
if DEBUG_MODE: print(f"Entered cleanup_temp_files function...")
|
| 323 |
-
|
| 324 |
-
if DEBUG_MODE: print(f"File paths to remove: {file_paths}")
|
| 325 |
|
| 326 |
for path in file_paths:
|
| 327 |
if path and os.path.exists(path):
|
| 328 |
if DEBUG_MODE: print(f"Removing path: {path}")
|
| 329 |
os.remove(path)
|
| 330 |
|
| 331 |
-
if DEBUG_MODE: print(f"Exited cleanup_temp_files function.")
|
| 332 |
|
| 333 |
|
| 334 |
-
def generate(audio_path, use_v2_fast):
|
| 335 |
-
|
| 336 |
-
if DEBUG_MODE: print(f"Entering generate function...")
|
| 337 |
|
| 338 |
-
|
| 339 |
|
| 340 |
load_cudnn()
|
| 341 |
-
device,
|
| 342 |
-
model = load_model(use_v2_fast, device,
|
| 343 |
-
split_input_stereo_channels(audio_path)
|
| 344 |
-
left_waveform, right_waveform = process_waveforms()
|
| 345 |
-
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model, use_v2_fast)
|
| 346 |
-
output = post_process_transcripts(left_result, right_result, use_v2_fast)
|
| 347 |
-
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
if DEBUG_MODE: print(f"Exited generate function.")
|
| 355 |
|
| 356 |
-
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
|
|
|
|
|
| 1 |
from faster_whisper import WhisperModel
|
| 2 |
+
from transformers import pipeline
|
| 3 |
from pydub import AudioSegment
|
| 4 |
import os
|
| 5 |
import torchaudio
|
|
|
|
| 10 |
from pathlib import Path
|
| 11 |
import glob
|
| 12 |
import ctypes
|
| 13 |
+
import numpy as np
|
| 14 |
|
| 15 |
+
from settings import DEBUG_MODE, MODEL_PATH_V2_FAST, MODEL_PATH_V1, LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH, RESAMPLING_FREQ, BATCH_SIZE, TASK
|
| 16 |
|
| 17 |
def load_cudnn():
|
| 18 |
|
|
|
|
| 55 |
|
| 56 |
def get_settings():
|
| 57 |
|
|
|
|
|
|
|
| 58 |
is_cuda_available = torch.cuda.is_available()
|
| 59 |
if is_cuda_available:
|
| 60 |
device = "cuda"
|
| 61 |
+
compute_type = "default"
|
| 62 |
+
|
| 63 |
else:
|
| 64 |
device = "cpu"
|
| 65 |
+
compute_type = "default"
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
if DEBUG_MODE: print(f"[SETTINGS] Device: {device}")
|
| 68 |
|
| 69 |
return device, compute_type
|
| 70 |
|
| 71 |
|
| 72 |
+
|
| 73 |
def load_model(use_v2_fast, device, compute_type):
|
| 74 |
|
| 75 |
+
if DEBUG_MODE:
|
| 76 |
+
print(f"[MODEL LOADING] use_v2_fast: {use_v2_fast}")
|
|
|
|
| 77 |
|
| 78 |
if use_v2_fast:
|
|
|
|
| 79 |
model = WhisperModel(
|
| 80 |
MODEL_PATH_V2_FAST,
|
| 81 |
device = device,
|
| 82 |
compute_type = compute_type,
|
| 83 |
)
|
| 84 |
else:
|
| 85 |
+
model = pipeline(
|
| 86 |
+
task="automatic-speech-recognition",
|
| 87 |
+
model=MODEL_PATH_V1,
|
| 88 |
+
chunk_length_s=30,
|
| 89 |
+
device=device,
|
| 90 |
+
token=os.getenv("HF_TOKEN")
|
| 91 |
+
)
|
| 92 |
+
|
|
|
|
| 93 |
return model
|
| 94 |
|
| 95 |
|
| 96 |
def split_input_stereo_channels(audio_path):
|
| 97 |
|
|
|
|
|
|
|
| 98 |
ext = os.path.splitext(audio_path)[1].lower()
|
| 99 |
|
| 100 |
if ext == ".wav":
|
|
|
|
| 102 |
elif ext == ".mp3":
|
| 103 |
audio = AudioSegment.from_file(audio_path, format="mp3")
|
| 104 |
else:
|
| 105 |
+
raise ValueError(f"[FORMAT AUDIO] Unsupported file format for: {audio_path}")
|
| 106 |
|
| 107 |
channels = audio.split_to_mono()
|
| 108 |
|
| 109 |
if len(channels) != 2:
|
| 110 |
+
raise ValueError(f"[FORMAT AUDIO] Audio {audio_path} has {len(channels)} channels (instead of 2).")
|
| 111 |
|
| 112 |
channels[0].export(RIGHT_CHANNEL_TEMP_PATH, format="wav") # Right
|
| 113 |
channels[1].export(LEFT_CHANNEL_TEMP_PATH, format="wav") # Left
|
| 114 |
|
|
|
|
| 115 |
|
| 116 |
+
def compute_type_to_audio_dtype(compute_type: str, device: str) -> np.dtype:
|
| 117 |
|
| 118 |
+
compute_type = compute_type.lower()
|
| 119 |
|
| 120 |
+
if device.startswith("cuda"):
|
| 121 |
+
if "float16" in compute_type or "int8" in compute_type:
|
| 122 |
+
audio_np_dtype = np.float16
|
| 123 |
+
else:
|
| 124 |
+
audio_np_dtype = np.float32
|
| 125 |
+
else:
|
| 126 |
+
audio_np_dtype = np.float32
|
| 127 |
+
|
| 128 |
+
return audio_np_dtype
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def format_audio(audio_path: str, compute_type: str, device: str) -> np.ndarray:
|
| 132 |
|
| 133 |
input_audio, sample_rate = torchaudio.load(audio_path)
|
| 134 |
|
|
|
|
| 139 |
input_audio = resampler(input_audio)
|
| 140 |
input_audio = input_audio.squeeze()
|
| 141 |
|
| 142 |
+
np_dtype = compute_type_to_audio_dtype(compute_type, device)
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
input_audio = input_audio.numpy().astype(np_dtype)
|
| 145 |
|
| 146 |
+
if DEBUG_MODE:
|
| 147 |
+
print(f"[FORMAT AUDIO] Audio dtype for actual_compute_type: {input_audio.dtype}")
|
| 148 |
+
return input_audio
|
| 149 |
|
|
|
|
| 150 |
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
def process_waveforms(device: str, compute_type: str):
|
|
|
|
|
|
|
| 153 |
|
| 154 |
+
left_waveform = format_audio(LEFT_CHANNEL_TEMP_PATH, compute_type, device)
|
| 155 |
+
right_waveform = format_audio(RIGHT_CHANNEL_TEMP_PATH, compute_type, device)
|
| 156 |
|
| 157 |
return left_waveform, right_waveform
|
| 158 |
|
| 159 |
|
| 160 |
+
def transcribe_pipeline(audio, model):
|
| 161 |
+
text = model(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": TASK}, return_timestamps=True)["text"]
|
| 162 |
+
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
|
|
|
| 164 |
|
| 165 |
+
def transcribe_channels(left_waveform, right_waveform, model):
|
| 166 |
|
| 167 |
+
left_result, _ = model.transcribe(left_waveform, beam_size=5, task="transcribe")
|
| 168 |
+
right_result, _ = model.transcribe(right_waveform, beam_size=5, task="transcribe")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
+
left_result = list(left_result)
|
| 171 |
+
right_result = list(right_result)
|
| 172 |
|
| 173 |
return left_result, right_result
|
| 174 |
|
|
|
|
| 227 |
return merged_transcription.strip()
|
| 228 |
|
| 229 |
|
| 230 |
+
def get_segments(result, speaker_label):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
|
| 232 |
+
segments = result
|
| 233 |
+
final_segments = [
|
| 234 |
+
(seg.start, seg.end, speaker_label, post_process_transcription(seg.text.strip()))
|
| 235 |
+
for seg in segments if seg.text
|
| 236 |
+
]
|
| 237 |
|
| 238 |
return final_segments
|
| 239 |
|
| 240 |
|
| 241 |
+
def post_process_transcripts(left_result, right_result):
|
|
|
|
|
|
|
| 242 |
|
| 243 |
+
left_segs = get_segments(left_result, "Speaker 1")
|
| 244 |
+
right_segs = get_segments(right_result, "Speaker 2")
|
| 245 |
|
| 246 |
merged_transcript = sorted(
|
| 247 |
left_segs + right_segs,
|
|
|
|
| 253 |
clean_output += f"[{speaker}]: {text}\n"
|
| 254 |
clean_output = clean_output.strip()
|
| 255 |
|
|
|
|
|
|
|
| 256 |
return clean_output
|
| 257 |
|
| 258 |
|
| 259 |
def cleanup_temp_files(*file_paths):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
for path in file_paths:
|
| 262 |
if path and os.path.exists(path):
|
| 263 |
if DEBUG_MODE: print(f"Removing path: {path}")
|
| 264 |
os.remove(path)
|
| 265 |
|
|
|
|
| 266 |
|
| 267 |
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
+
def generate(audio_path, use_v2_fast):
|
| 270 |
|
| 271 |
load_cudnn()
|
| 272 |
+
device, requested_compute_type = get_settings()
|
| 273 |
+
model = load_model(use_v2_fast, device, requested_compute_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
if use_v2_fast:
|
| 276 |
+
actual_compute_type = model.model.compute_type
|
| 277 |
+
else:
|
| 278 |
+
actual_compute_type = "float32" #HF pipeline safe default
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
if DEBUG_MODE:
|
| 281 |
+
print(f"[SETTINGS] Requested compute_type: {requested_compute_type}")
|
| 282 |
+
print(f"[SETTINGS] Actual compute_type: {actual_compute_type}")
|
| 283 |
+
|
| 284 |
+
if use_v2_fast:
|
| 285 |
+
split_input_stereo_channels(audio_path)
|
| 286 |
+
left_waveform, right_waveform = process_waveforms(device, actual_compute_type)
|
| 287 |
+
left_result, right_result = transcribe_channels(left_waveform, right_waveform, model)
|
| 288 |
+
output = post_process_transcripts(left_result, right_result)
|
| 289 |
+
cleanup_temp_files(LEFT_CHANNEL_TEMP_PATH, RIGHT_CHANNEL_TEMP_PATH)
|
| 290 |
+
else:
|
| 291 |
+
audio = format_audio(audio_path, actual_compute_type, device)
|
| 292 |
+
merged_results = transcribe_pipeline(audio, model)
|
| 293 |
+
output = post_process_transcription(merged_results)
|
| 294 |
|
| 295 |
+
return output
|